傅里叶变换
傅里叶变换
第六讲 傅里十变换的性质
第六讲 傅里叶变换的性质
1.傅里叶变换的性质 东 4.1微分性质: ①若imf(t)=0,则F[f'(t)]=jw·F[f(t)] ②一般的nf(④=0(k=0,1,2,n-1)则 F[f'"(t)]=Uw)2·F[f(t)] Ff"(t)]=Uw)3·F[f(t)] Ff(n)(t)=(jw)n.F[f(t)]
4.1 微分性质: ① 若 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒕 = 𝟎, 则 𝓕 𝒇′ 𝒕 =𝐣𝝎 ∙ 𝓕[𝒇 𝒕 ] ② 一般的 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒌 𝒕 = 𝟎 𝒌 = 𝟎, 𝟏, 𝟐, . , 𝒏 − 𝟏 则 𝓕 𝒇 (𝒏) 𝒕 =(𝐣𝝎) 𝒏 ∙ 𝓕[𝒇 𝒕 ] 𝓕 𝒇′′ 𝒕 =(𝒋𝝎) 𝟐 ∙ 𝓕 𝒇(𝒕) 𝓕 𝒇′′′ 𝒕 =(𝒋𝝎) 𝟑 ∙ 𝓕 𝒇 𝒕 ⋯ 1.傅里叶变换的性质
证:①当lt|→+oo时,f(t)ejwt|=lf(t)川→0,得f(t)ejwt→0. F[f'(tl=∫e-Jotdf(e) -f(t)e-Jwt+jf(t)e-Jwtdt-jwFlF(t] ②同理:当1imf(t)=0(k=0,1,2,n-1)则 t→+0∞ F[f"(t)]=jωF[f'(t)]=Uw)2·F[f(t)] F[f'"(t)]=jωF[f'"(t)]=Uω)2·F[f'(t)]=0ω)3·Ff(t)] Ff()(t)]=(jw)m.F[f(t)]
证:① 当 𝒕 → +∞时, 𝒇 𝒕 𝒆 −𝒋𝝎𝒕 = 𝒇 𝒕 → 𝟎, 得𝒇 𝒕 𝒆 −𝒋𝝎𝒕 → 𝟎. ∞−= �� ′�� �� +∞ 𝒆 −𝒋𝝎𝒕𝒅𝒇(𝒕) = 𝒇 𝒕 𝒆 −𝒋𝝎𝒕 ฬ +∞ −∞ ∞− �𝒋� + +∞ 𝒇(𝒕)𝒆 −𝒋𝝎𝒕𝒅𝒕 = 𝐣𝝎𝓕[𝒇 𝒕 ] 𝓕 𝒇′′ 𝒕 =𝐣𝝎𝓕 𝒇′(𝒕) = (𝒋𝝎) 𝟐 ∙ 𝓕 𝒇(𝒕) 𝓕 𝒇′′′ 𝒕 =𝐣𝝎𝓕 𝒇′′(𝒕) = (𝒋𝝎) 𝟐 ∙ 𝓕 𝒇 ′ 𝒕 = (𝒋𝝎) 𝟑 ∙ 𝓕 𝒇 𝒕 ② 同理:当 𝐥𝐢𝐦 𝒕 →+∞ 𝒇 𝒌 𝒕 = 𝟎 𝒌 = 𝟎, 𝟏, 𝟐, . , 𝒏 − 𝟏 则 𝓕 𝒇 (𝒏) 𝒕 =(𝐣𝝎) 𝒏 ∙ 𝓕[𝒇 𝒕 ] ⋯
4.2像函数的导数公式:F(ω)=F[f(t)] ω=-jr[tf(t小, ② dw )=(-j)"F[t"f(t)] dw2 证:① dF(ω) de-Jof()dt do dw je-jwttf(t)dt ② (2e-Jwtt2f(t)dt=(-j)2Ft2f(t)] da2 =(-)n F[tf(t)]. don 常用公式 a0=tf
4.2 像函数的导数公式: ① 𝒅𝑭(𝝎) 𝒅𝝎 = ∞− �� +∞ 𝒆 −𝒋𝝎𝒕𝒇 𝒕 𝒅𝒕 𝒅𝝎 ∞− ��−= +∞ 𝒆 −𝒋𝝎𝒕 𝒕𝒇 𝒕 𝒅𝒕 ① 𝒅𝑭(𝝎) 𝒅𝝎 = −𝒋 𝓕 𝒕𝒇 𝒕 , ② 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝟐 = (−𝒋) 𝒏 𝓕[𝒕 𝒏𝒇(𝒕)] ② 𝒅 𝟐𝑭(𝝎) 𝒅𝝎𝟐 =(−𝒋) ∞− �� +∞ 𝒆 −𝒋𝝎𝒕 𝒕 𝟐𝒇 𝒕 𝒅𝒕 = (−𝒋) 𝟐 𝓕[𝒕 𝟐𝒇 𝒕 ] 证: ⋯ 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝒏 = (−𝒋) 𝒏 𝓕 𝒕 𝒏𝒇 𝒕 . 1 (−𝒋) 𝒏 𝒅 𝒏𝑭(𝝎) 𝒅𝝎𝒏 = 𝓕[𝒕 𝒏 常用公式 𝒇(𝒕)] 𝑭(𝝎)=𝓕 𝒇 𝒕