IS(0)T(p)1=bS(0)T(p) 88 d)ibd T()方 T()=Aeiboin (4.18) 依单值条件有 T(2=T( (4.19) Aebo1heb2π/h=Aebp1h eib2π1h =1 (4.20)
[ ( ) ()] ( ) () i S T = bS T − d ib T dT = ( ) ( ) / ( ) ib T = Ae (4.18) 依单值条件有 T(+2) = T() (4.19) i b / i b / i b / Ae e = Ae 2 1 2 = ib / e (4.20)
由,ea=cosa+iSin0a=1有u=2m m=0,±1,±2, 即 2πb/h=2um b=mh,m=0,±1,±2,. (4.21) (4.18)式可写成 T()=Aem0m=0,+1,+2,. (4.22) 角动量分量的本征值是量子化的
由 , 有 = 2m m = 0, 1, 2, … = cos + sin =1 e i i 即 2b/ = 2m b = m, m = 0,1,2,... (4.21) (4.18)式可写成 im T( ) = Ae m = 0, 1, 2, … (4.22) 角动量z分量的本征值是量子化的
F(r0.=R(r)Y(0=R(r)S(0 T( (4.23) 由归一化条件有 ipF(c,01r产sm6di0a=l (4.24) (4.23)代入(4.24),得 0R1r2d1s(01sn6d91T(φ)0=1(4.25) 分别归一化 01R2(r川r2d=11s2(0)Isina0=11T2()地=1 (4.26)
令 F(r,,) = R(r) Y(,) = R(r) S() T() (4.23) 由归一化条件有 | F (r, , ) | r sin drd d 1 0 0 2 0 2 2 = (4.24) (4.23) 代入(4.24),得 | R (r) | r dr |S ( ) |sin d |T ( ) |d 1 0 0 2 0 2 2 2 2 = (4.25) 分别归一化 1 0 2 2 = | R (r)|r dr 1 0 2 = | S ( )|sin d 1 2 0 2 = | T ( ) |d (4.26)
T(=(Aeme )emed=d=1 1=云 \A2元 (4.27) T)=2元 m=0,±1,±2,. (4.28) 应用密级数方法解(4.17)角动量平方本征方 程,得
1 2 0 2 0 2 0 2 = = = T d Ae Ae d A A d i m i m | ( )| ( )* * 2 2 1 | A | = 2 1 | A|= (4.27) im T e 2 1 ( ) = m = 0, 1, 2, … (4.28) 应用密级数方法解(4.17)角动量平方本征方 程,得:
本征值:c=方(k+|mD(k+|m|+l), k=0,1,2, (4.29) 角量子数:1=k+ml,m≤1 角动量(平方): c=1(0+1)h2,1=0,1,2,3, (4.30) m=-1,-1+1,-1+2,,-1,0,1,2,3,,1 (4.31)
本征值: k = 0, 1, 2, … (4.29) ( | |)( | | 1), 2 c = k+ m k+ m + 角量子数:l k+|m|, |m| l 角动量(平方): ,l=0,1, 2, 3, … (4.30) 2 c = l(l +1) m = -l, -l+1, -l+2, …, -1, 0, 1, 2, 3,…, l (4.31)