证:X(z)= x(n)2 dx(z) d v x(n) n dz dz 1=-00 dz x(n-nz nx(n) z 1=-0 1=-00 ur(n dX(=) ZTInx(n)I R<|<R
( ) ( ) n n X z x n z 证: ( ) ( ) ( ) ( ) n n n n dX z d d x n z x n z dz dz dz 1 1 ( )( ) ( ) n n n n x n n z z nx n z 1 z ZT[nx(n)] ( ) [ ( )] x x dX z ZT nx n z R z R dz
5、共轭序列 若Z[x(m)=X(x)R<<R 则Zx(n)=X(z)R<|<R 证:zx()=∑x(n”=∑[x() X(2) R <=k<R
5、共轭序列 若 [ ( )] ( ) x x ZT x n X z R z R * * * ZT[x (n)] X (z ) x x R z R * * * * [ ( )] ( ) [ ( )( ) ] n n n n ZT x n x n z x n z * * X (z ) x x R z R 则 证:
6、翻褶序列 若Z[x(n)=X(=)R<|<R x(-n R R 证:Z[x(m)=∑x(-n)"=∑x(n)= (n(z-)"=X R <R→ R R
6、翻褶序列 若 [ ( )] ( ) x x ZT x n X z R z R 1 ZT[x( n)] X z 1 1 x x z R R 则 [ ( )] ( ) ( ) n n n n ZT x n x n z x n z 证: 1 1 ( )( ) n n x n z X z 1 1 1 x x x x R R z z R R