续前 (三)发射光谱 M 发光→释放能量yM+hv →发射光谱 激发态 基态光 例:V射线;x-射线;荧光 (四)吸收光谱 M+hv 吸收辐射能量 M 一吸收光谱 基态光 激发态 例:原子吸收光谱,分子吸收光谱
续前 (三)发射光谱 (四)吸收光谱 激发态 基态 光 发光 释放能量 M ⎯⎯⎯⎯ ⎯→M + h * → ⎯→发射光谱 基态 光 激发态 吸收辐射能量 * M + h ⎯⎯⎯⎯⎯→M ✓例:γ-射线;x-射线;荧光 ✓例:原子吸收光谱,分子吸收光谱 ⎯→吸收光谱
三、光谱法仪器 分光光度计 主要特点:五个单元组成 光源 单色器 样品池 记录装置 检测器
三、光谱法仪器——分光光度计 ➢ 主要特点:五个单元组成 光源 单色器 样品池 记录装置 检测器
第二节紫外-可见吸收光谱 一、紫外-可见吸收光谱的产生 二、紫外-可见吸收光谱的电子跃迁类型 三、相关的基本概念 四、吸收带类型和影响因素
第二节 紫外-可见吸收光谱 一、紫外-可见吸收光谱的产生 二、紫外-可见吸收光谱的电子跃迁类型 三、相关的基本概念 四、吸收带类型和影响因素
一、紫外-可见吸收光谱的产生 1.分子吸收光谱的产生一一由能级间的跃迁引起 能级:电子能级、振动能级、转动能级 跃迁:电子受激发,从低能级转移到高能级的过程 E分=E电十E振+E转 能级差△E=hy=h.g 若用一连续的电磁辐射照射样品分子,将照射前后的 光强度变化转变为电信号并记录下来,就可得到光强 度变化对波长的关系曲线,即为分子吸收光谱
一、紫外-可见吸收光谱的产生 1.分子吸收光谱的产生——由能级间的跃迁引起 ✓ 能级:电子能级、振动能级、转动能级 ✓ 跃迁:电子受激发,从低能级转移到高能级的过程 若用一连续的电磁辐射照射样品分子,将照射前后的 光强度变化转变为电信号并记录下来,就可得到光强 度变化对波长的关系曲线,即为分子吸收光谱 E 分 = E 电 + E 振 + E 转 c 能级差 E = h = h
续前 2.分子吸收光谱的分类: 分子内运动涉及三种跃迁能级,所需能量大小顺序 △E电>△E振>△E转 △E电=1~20ev>入=0.06~1.25m一紫外-可见吸收光谱 △E振=0.05~1ey>2=25~1.25um三红外吸收光谱 △E转=0.005~0.05ev<>2=250~25m一远红外吸收光谱 3.紫外-可见吸收光谱的产生 由于分子吸收紫外-可见光区的电磁辐射,分子 中 价电子(或外层电子)的能级跃迁而产生 (吸收能量=两个跃迁能级之差)
续前 2.分子吸收光谱的分类: 分子内运动涉及三种跃迁能级,所需能量大小顺序 E 电 E 振 E 转 远红外吸收光谱 红外吸收光谱 紫外 可见吸收光谱 转 振 电 = = = = = = − E e v m E e v m E e v m 0.005 ~ 0.05 250 ~ 25 0.05 ~1 25 ~1.25 1~ 20 0.06 ~1.25 3.紫外-可见吸收光谱的产生 由于分子吸收紫外-可见光区的电磁辐射,分子 中 价电子(或外层电子)的能级跃迁而产生 (吸收能量=两个跃迁能级之差)