中国海洋大学 生物学实验指导 实验一透射电子显微镜的原理与演示 解剖、观察和分析历来是生物学研究的基本手段。用于细胞解剖观察的主要工具就是显 微镜,它是我们观察细胞形态最常用的工具。但其分辨率的最小数值不会小于0.2μum(紫外 光显微镜的分辨率也只能达到0.lμm),这一数值是光学显微镜分辨率的极限。限制显微镜分 辨率的关键因素是光的波长(光的衍射效应),显微镜无论制作得如何精密都无法突破这一极 限,一般显微镜设计的最大放大倍数为1000~1500倍,因为将0.2um的质点放大到 02~0.3mm(人肉眼的分辨率)就可以辨认清楚。如果分辨率不再提高,只提高放大倍数毫无意 义,并不能增加图像的清晰度 在光学显微镜下小于0.2μm的一些细微结构,即便是再提高放大倍数也无法看清,这 些结构称为亚显微结构( submicroscopic structure)或超微结构( ultramicroscopic structure, ultrastructure)要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。于 是,德国柏林大学的E. Ruska等便选择了电子束为光源来突破光学显微镜分辨率的极限 终于在1938年研制出了世界上第一台实用透射电子显微镜( transmission electron microscope, TM)。目前所使用的显微镜,根据光源不同,可分为光学显微镜(简称光镜)和电子显微镜(简 称电镜)两大类。前者以可见光(紫外光显微镜以紫外光)为光源后者则以电子束为光源。电 镜的问世,为细胞生物学的研究打开了局面。尤其是1953年瑞典学者成功制造出的超薄切 片机以及随后相继出现的各种电子染色技术,使超薄切片技术得到快速发展和完善,从而大 大推动了电镜在生物学研究领域中的广泛使用。 目前,电镜技术在细胞生物学研究领域中已由细胞水平发展到了分子和原子水平。英国 学者A.Klug博士已将高分辨电镜技术应用到了生物大分子的结构测定上,在核酸-蛋白质 复合体的晶体结构研究中做出了突出成就,在1982年他也因此获得了诺贝尔化学奖。现在 电镜已经成为细胞生物学、分子生物学和分子遗传学等不可缺少的重要研究手段之一,仍然 将为细胞生物学等生物学领域的研究做出应有的贡献。 实验目的 1.通过对透射电镜的结构和成像原理的讲解,了解透射电镜的工作原理和结构 2.通过对电镜演示,了解电镜的操作方法及其在细胞生物学领域中的应用情况 实验用品
中国海洋大学 细胞生物学实验指导 实验一 透射电子显微镜的原理与演示 解剖、观察和分析历来是生物学研究的基本手段。用于细胞解剖观察的主要工具就是显 微镜,它是我们观察细胞形态最常用的工具。但其分辨率的最小数值不会小于 0.2m(紫外 光显微镜的分辨率也只能达到 0.1m), 这一数值是光学显微镜分辨率的极限。限制显微镜分 辨率的关键因素是光的波长(光的衍射效应),显微镜无论制作得如何精密都无法突破这一极 限, 一般显微镜设计的最大放大倍数为 1000~1500 倍, 因为将 0.2m 的质点放大到 0.2~0.3mm(人肉眼的分辨率)就可以辨认清楚。如果分辨率不再提高, 只提高放大倍数毫无意 义,并不能增加图像的清晰度。 在光学显微镜下小于 0.2m 的一些细微结构,即便是再提高放大倍数也无法看清,这 些结构称为亚显微结构(submicroscopic structure) 或超微结构(ultramicroscopic structure; ultrastructure)要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。于 是,德国柏林大学的 E. Ruska 等便选择了电子束为光源来突破光学显微镜分辨率的极限, 终于在 1938 年研制出了世界上第一台实用透射电子显微镜(transmission electron microscope, TEM)。目前所使用的显微镜, 根据光源不同,可分为光学显微镜(简称光镜)和电子显微镜(简 称电镜)两大类。前者以可见光(紫外光显微镜以紫外光)为光源, 后者则以电子束为光源。电 镜的问世,为细胞生物学的研究打开了局面。尤其是 1953 年瑞典学者成功制造出的超薄切 片机以及随后相继出现的各种电子染色技术,使超薄切片技术得到快速发展和完善,从而大 大推动了电镜在生物学研究领域中的广泛使用。 目前,电镜技术在细胞生物学研究领域中已由细胞水平发展到了分子和原子水平。英国 学者 A. Klug 博士已将高分辨电镜技术应用到了生物大分子的结构测定上,在核酸-蛋白质 复合体的晶体结构研究中做出了突出成就,在 1982 年他也因此获得了诺贝尔化学奖。现在, 电镜已经成为细胞生物学、分子生物学和分子遗传学等不可缺少的重要研究手段之一,仍然 将为细胞生物学等生物学领域的研究做出应有的贡献。 实 验 目 的 1. 通过对透射电镜的结构和成像原理的讲解, 了解透射电镜的工作原理和结构。 2. 通过对电镜演示,了解电镜的操作方法及其在细胞生物学领域中的应用情况。 实 验 用 品
透射与扫描电镜、超薄切片机、幻灯机、投影仪、超薄切片示教片,以及各种细胞超微 结构照片等。 实验原理 电镜与光镜的对比 1.电镜出现的必然性 普通光镜虽然仍是我们观察细胞形态最常用的工具,但由于其所用光源为可见光(或紫 外光),故其分辨率( Resolution)存在有一个无法突破的限制。分辨率是指显微镜能将近邻的 两个质点分辨清楚的能力,通常是用相邻两点间的距离(D来表示B其公式如下: 0.612A D Na 分辨率的数值越小,显微镜的分辨能力就越大,反之越小。由上述公式可以看出,分辨 率的数值与波长成正比,与镜口率成反比。因此,要想得到高分辨率必须要缩短波长和加大 镜口率,在普通光镜中我们使用的光源为可见光,波长为400~700nm(平均值为550m),这 个数值无法改变,唯一可改变的数值为镜口率(NA),NA的大小决定于镜口角的大小和物 镜与标本间介质折射率( refraction coefficient)的大小。其计算公式如下: 其中,n为物镜与标本之间介质的折射率:a为镜 口角(聚光器交点对物镜镜口的张角) 由此可见,镜口率与n及sina2成正比。制作镜头所用的光学玻璃的折射率为1.65~1.78, 所用介质的折射率越接近玻璃越理想。空气的折射率为1,水为1.3,香柏油为1.515,a- 溴萘为1.66。镜口角总是小于180°,所以sinαΩ的最大值必然小于1。对于干燥物镜来说 介质为空气,镜口率一般为0.05~0.95;而油镜用香柏油为介质,镜口率可接近1.5,如果用 溴萘则可达1.66。而就目前看来,光镜镜口率的最大值也只有1.78。根据计算,光镜分辨率 的最小数值不会小于02um(将16代入分辨率公式求得,约等于光波的一半,紫外光显微镜 的分辨率也只能达到0.lum,这一数值是光学分辨率的极限。限制光镜分辨率的关键因素是 光的波长(光的衍射效应),光镜无论制作得如何精密都无法突破这一极限,所以一般光镜设 计的最大放大倍数为1,00041,500×,因为将02um的质点放大到02~03mm(人肉眼的分辨率) 就可以辨认清楚 但在一般想象中,似乎显微镜的放大倍数越大,观察到的物体应该越清楚。然而事实并 不然,因为在这里涉及到有效放大和无效放大两个概念。有效放大是指本来用肉眼看不清楚 的物体经显微镜放大成像后可以分辨清楚的放大;而无效放大则是指本来用肉眼能看清楚 的物体经放大镜、幻灯机或投影仪等放大成像后可以分辨得更清楚的放大。此外,我们所看 到的物象是否清楚不仅决定于放大倍数,而且还要受到一些物理因素和透镜质量的影响(例 如球差和色差等),但归根到底,影响显微镜成像清晰度最关键的因素是显微镜的分辨率。如 果分辨率不再提高,只提高放大倍数毫无意义,并不能增加图像的清晰度 在光镜下即便是再提高放大倍数也无法看清亚显微结构(或超微结构)。要想看清这些结 构,就必须选择波长更短的光源,以提高显微镜的分辨率。电子束的波长要比可见光和紫外
透射与扫描电镜、超薄切片机、幻灯机、投影仪、超薄切片示教片,以及各种细胞超微 结构照片等。 实 验 原 理 一、电镜与光镜的对比 1. 电镜出现的必然性 普通光镜虽然仍是我们观察细胞形态最常用的工具,但由于其所用光源为可见光(或紫 外光),故其分辨率(Resolution)存在有一个无法突破的限制。分辨率是指显微镜能将近邻的 两个质点分辨清楚的能力, 通常是用相邻两点间的距离(D)来表示 B 其公式如下: . . 0.612 N A D = 分辨率的数值越小,显微镜的分辨能力就越大,反之越小。由上述公式可以看出,分辨 率的数值与波长成正比,与镜口率成反比。因此, 要想得到高分辨率必须要缩短波长和加大 镜口率,在普通光镜中我们使用的光源为可见光,波长为 400~700nm (平均值为 550nm), 这 个数值无法改变, 唯一可改变的数值为镜口率(N.A.), N.A.的大小决定于镜口角的大小和物 镜与标本间介质折射率(refraction coefficient)的大小。其计算公式如下: 由此可见,镜口率与n及sin /2成正比。制作镜头所用的光学玻璃的折射率为1.65~1.78, 所用介质的折射率越接近玻璃越理想。空气的折射率为 1,水为 1.33,香柏油为 1.515,- 溴萘为 1.66。镜口角总是小于 180°, 所以 sin /2 的最大值必然小于 1。对于干燥物镜来说, 介质为空气, 镜口率一般为 0.05~0.95; 而油镜用香柏油为介质, 镜口率可接近 1.5, 如果用 溴萘则可达 1.66。而就目前看来, 光镜镜口率的最大值也只有 1.78。根据计算,光镜分辨率 的最小数值不会小于 0.2m(将 1.6 代入分辨率公式求得), 约等于光波的一半,紫外光显微镜 的分辨率也只能达到 0.1m, 这一数值是光学分辨率的极限。限制光镜分辨率的关键因素是 光的波长(光的衍射效应), 光镜无论制作得如何精密都无法突破这一极限, 所以一般光镜设 计的最大放大倍数为1,000~1,500, 因为将0.2m的质点放大到0.2~0.3mm(人肉眼的分辨率) 就可以辨认清楚。 但在一般想象中, 似乎显微镜的放大倍数越大, 观察到的物体应该越清楚。然而事实并 不然,因为在这里涉及到有效放大和无效放大两个概念。有效放大是指本来用肉眼看不清楚 的物体经显微镜放大成像后可以分辨清楚的放大; 而无效放大则是指本来用肉眼能看清楚 的物体经放大镜、幻灯机或投影仪等放大成像后可以分辨得更清楚的放大。此外, 我们所看 到的物象是否清楚不仅决定于放大倍数,而且还要受到一些物理因素和透镜质量的影响(例 如球差和色差等), 但归根到底, 影响显微镜成像清晰度最关键的因素是显微镜的分辨率。如 果分辨率不再提高,只提高放大倍数毫无意义, 并不能增加图像的清晰度。 在光镜下即便是再提高放大倍数也无法看清亚显微结构(或超微结构)。要想看清这些结 构,就必须选择波长更短的光源,以提高显微镜的分辨率。电子束的波长要比可见光和紫外 其中,n 为物镜与标本之间介质的折射率;为镜 2 口角(聚光器交点对物镜镜口的张角) . . sin N A = n
光短得多(表1),电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长 越短。于是,德国柏林大学的 E Ruska等便选择了电子東为光源来突破光学显微镜分辨率的 极限,终于在1938年发明了世界上第一台实用透射电镜。由此可见,电镜的问世是研究细 胞超微结构的必然需要。 2.电镜与光镜的异同点 电镜在结构上与光镜相同,均是由照明光源和透镜构成。所不同的是,(1)电镜所用照 明光源为电子枪发射的高压电子束,而光镜为卤灯(或汞灯)产生的可见光(或紫外光)。(2)电 镜所用透镜为电透镜,聚焦方式为电聚焦;而光镜所用透镜为光学透镜,聚焦方式为机械聚 焦。(3)电镜所用介质必须是真空,而光镜则为空气(详细区别见表2) 电镜与光镜的成像原理也基本相同,但由于二者所用照明光源的不同,其成像机理又有 着本质的区别。光镜的成像过程是对可见光的反射与吸收;而电镜的成像过程则是通过对电 电子显微镜 光学显微锐 电子 光线一[介一电子惠 聚光镜 置于有变持 空气中[通路一真空中 技璃透镜投影镜上电子透镜 照相底片[记录 子束的散射(图1)。 图1电子显微镜与光学显微镜结构的对比图解 二、透射电镜的结构与成像原理 透射电镜的结构 电镜的基本构造见图2。在结构上电镜主要由真空系统、供电及保护系统、电子照明系 统、成象系统和观察记录系统五大部分构成,其中,电子照明系统、成象系统和观察记录系 统又被称为透镜系统或电子光学系统。 (1)真空系统电镜所用“光”源为高压电子束,这就要求其介质必须处于真空状态 般说来,抽真空的意义有三:①防止灯丝的氧化损伤;②确保电子束在运行过程中不受空 气分子的干扰(因为电子在运行过程中一旦遇到空气分子便被散射或吸收,会严重干扰电子 的运动轨迹);③去除空气分子对样品的污染
光短得多(表 1), 电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长 越短。于是,德国柏林大学的 E.Ruska 等便选择了电子束为光源来突破光学显微镜分辨率的 极限,终于在 1938 年发明了世界上第一台实用透射电镜。由此可见,电镜的问世是研究细 胞超微结构的必然需要。 2. 电镜与光镜的异同点 电镜在结构上与光镜相同,均是由照明光源和透镜构成。所不同的是,(1)电镜所用照 明光源为电子枪发射的高压电子束,而光镜为卤灯(或汞灯)产生的可见光(或紫外光)。(2)电 镜所用透镜为电透镜,聚焦方式为电聚焦; 而光镜所用透镜为光学透镜, 聚焦方式为机械聚 焦。(3)电镜所用介质必须是真空,而光镜则为空气(详细区别见表 2)。 电镜与光镜的成像原理也基本相同,但由于二者所用照明光源的不同,其成像机理又有 着本质的区别。光镜的成像过程是对可见光的反射与吸收; 而电镜的成像过程则是通过对电 子束的散射(图 1)。 图 1 电子显微镜与光学显微镜结构的对比图解 二、透射电镜的结构与成像原理 1. 透射电镜的结构 电镜的基本构造见图 2。在结构上电镜主要由真空系统、供电及保护系统、电子照明系 统、成象系统和观察记录系统五大部分构成,其中, 电子照明系统、成象系统和观察记录系 统又被称为透镜系统或电子光学系统。 (1) 真空系统 电镜所用“光”源为高压电子束,这就要求其介质必须处于真空状态。 一般说来,抽真空的意义有三: ①防止灯丝的氧化损伤;②确保电子束在运行过程中不受空 气分子的干扰(因为电子在运行过程中一旦遇到空气分子便被散射或吸收, 会严重干扰电子 的运动轨迹); ③去除空气分子对样品的污染
真空系统由机械泵、油扩散泵、真空管道、阀门、冷阱和储气罐等装置构成。机械泵可 从大气状态(1Pa)抽到13×10-5~10-6Pa;油扩散泵可从1.3×10-6Pa抽到1.3×10-7~10-9Pa 冷阱中加入液氮后还可以从1.3×10-9Pa抽到1.3×10-10Pa。对于一般的电镜,真空度达到 1.3×10-9Pa便可安全使用。但对于高分辨率的超高压电镜,真空度必需达到13×10-12Pa才 表1各种光与电子束的波长比较 表2电子显微镜与光学显微镜的异同点 名称 波长(nm) 光学显微镜 电子显微镜 可见光 760~390 照射光 紫外光 390~13 波长(mm)长:200-750 短:0003~0008 X-射线 13~005 Y-射线 1~0.005 透镜光学透镜 电磁透镜 电子束 分辨力02-0.1m 0.Inm 100v 0.123 放大倍数 1000 1.000.000 10,000V 0.0122 聚焦方式机械聚焦 电聚焦 100.000V 0.00387 反衬度吸收、反射散射、吸收、衍射、相位 能安全使用,这就要求除上述抽真空装置外,还必须使用离子泵和真空涡流泵等来大大提高 真空度。 (2)供电及保护系统般的电镜均拥有两个电源,一个是高电压低电流的高压电 源,主要作用是产生高速电子;另一个是低电压高电流的透镜电源,主要作用是控制高速电 子束的运动轨迹。另外,为了保证电压和电流的高度稳定,电镜还配备有高精度的稳压和稳 流等保护与控制系统;而且一旦电镜的某一部分发生故障后,电镜的保护系统会让其自动紧 急关机和断电,以免损伤电镜 高压V (3)电子照明系统由电子枪和两级聚光镜组成,电子枪可 压电子束还要经过两级聚光镜进行会聚。第一聚光镜将电子束的直0 产生高压电子束,在灯丝前还有一栅板,栅板中央有一孔经可调的 小孔,用来控制电子束流的粗细,以阻挡一些散射电子。极细的高 径缩小20~60倍,第二聚光镜再将电子束的直径扩大1-2倍,以期 得到极细而均匀的电子束流。 (4)成象系统成象系统包括样品室、成像和放大装置。样品室为放置样品的部位 样品放置在一金属样品托中(可同时放置两个不同的样品),直接插入到样品室中。此外,还 有一冷阱直接与样品室相连。冷阱由一液氮罐和一金属导杆组成,金属导杆直接插入到样品 室中。液氮罐中的液氮(-196℃)将低温经金属导杆直接传递到样品室中,低温金属导杆通过 直接吸附样品室中的少量空气分子以提高真空度,而且样品室内温度的降低还可防止电子的 热漂移。 成像和放大部分分别由物镜、中间镜Ⅰ、中间镜Ⅱ和投影镜四级电磁透镜组成,透过样 品的电子经过物镜后可被放大50倍,经中间镜Ⅰ可被放大3倍,经中间镜Ⅱ可被放大15倍 经投影镜可被放大200倍,共计可被放大约500,000倍。 (5)观察记录系统由观察室、放大镜和照相装置构成。观察室又包括荧光屏和铅玻
真空系统由机械泵、油扩散泵、真空管道、阀门、冷阱和储气罐等装置构成。机械泵可 从大气状态(1 Pa)抽到 1.310-5~10-6Pa; 油扩散泵可从 1.310-6Pa 抽到 1.310-7 ~10-9Pa; 冷阱中加入液氮后还可以从 1.310-9Pa 抽到 1.310-10Pa。对于一般的电镜,真空度达到 1.310-9Pa 便可安全使用。但对于高分辨率的超高压电镜,真空度必需达到 1.310-12Pa 才 能安全使用,这就要求除上述抽真空装置外, 还必须使用离子泵和真空涡流泵等来大大提高 真空度。 (2) 供电及保护系统 一般的电镜均拥有两个电源, 一个是高电压低电流的高压电 源,主要作用是产生高速电子;另一个是低电压高电流的透镜电源,主要作用是控制高速电 子束的运动轨迹。另外, 为了保证电压和电流的高度稳定, 电镜还配备有高精度的稳压和稳 流等保护与控制系统; 而且一旦电镜的某一部分发生故障后, 电镜的保护系统会让其自动紧 急关机和断电, 以免损伤电镜。 (3) 电子照明系统 由电子枪和两级聚光镜组成, 电子枪可 产生高压电子束,在灯丝前还有一栅板, 栅板中央有一孔经可调的 小孔,用来控制电子束流的粗细, 以阻挡一些散射电子。极细的高 压电子束还要经过两级聚光镜进行会聚。第一聚光镜将电子束的直 径缩小 20~60 倍,第二聚光镜再将电子束的直径扩大 1~2 倍,以期 得到极细而均匀的电子束流。 (4) 成象系统 成象系统包括样品室、成像和放大装置。样品室为放置样品的部位, 样品放置在一金属样品托中(可同时放置两个不同的样品),直接插入到样品室中。此外,还 有一冷阱直接与样品室相连。冷阱由一液氮罐和一金属导杆组成,金属导杆直接插入到样品 室中。液氮罐中的液氮(-196℃)将低温经金属导杆直接传递到样品室中, 低温金属导杆通过 直接吸附样品室中的少量空气分子以提高真空度,而且样品室内温度的降低还可防止电子的 热漂移。 成像和放大部分分别由物镜、中间镜 I、中间镜 II 和投影镜四级电磁透镜组成, 透过样 品的电子经过物镜后可被放大 50 倍,经中间镜 I 可被放大 3 倍, 经中间镜 II 可被放大 15 倍, 经投影镜可被放大 200 倍,共计可被放大约 500,000 倍。 (5) 观察记录系统 由观察室、放大镜和照相装置构成。观察室又包括荧光屏和铅玻 表 1 各种光与电子束的波长比较 名 称 波长 (nm) 可见光 760~390 紫外光 390~13 X-射线 13~0.05 -射线 1~0.005 电子束 100V 0.123 10,000V 0.0122 100,000V 0.00387 表 2 电子显微镜与光学显微镜的异同点 光学显微镜 电子显微镜 照 射 光 光 束 电子束 波长(nm) 长:200~750 短:0.003~0.008 介 质 空 气 真 空 透 镜 光学透镜 电磁透镜 分 辨 力 0.2~0.1m 0.1nm 放大倍数 1,000 1,000,000 聚焦方式 机械聚焦 电聚焦 反 衬 度 吸收、反射 散射、吸收、衍射、相位 高压 V 高 压 电子束 灯丝 栅板 阳极
璃窗。透过样品的电子打到荧光屏上可显示出反映样品真实结构的图像。由于电子对人眼有 害,故需要通过一个铅玻璃窗来观察,为了观察得更加清晰,在观察室外还配有一放大镜。 鉴于电子形成的荧光图像衰减速度很快,所以一旦观察到理想的结构图像就需要尽快利用照 相装置进行照相。值得注意的是,电镜照相与普通照相不同,图像的反衬度最低时才是正聚 焦,且底片还必须要经过预干燥处理。 2.透镜电镜的成像原理 透射电镜之所以能获得高分辨率的图像,主要是因为它解决了两个关键问题,一是用电 子枪发射出了波长极短的电子波,二是利用电磁透镜可控制电子的运动轨迹,即可对电子束 进行聚焦、放大和成像。故透射电镜的有效放大倍数可高达数百万倍 电子枪发射出的高速电子東在磁场中聚焦,从而被会聚到待观察的样品上:电子束在通 过样品时会发生散射,但由于样品不同部位的质量厚度不同,即物质的组成结构不同,电子 束发生散射的程度就不同;透过样品后的电子束撞击到荧光屏上,由电能转变成光能,形成 了浓淡不同的图像。此图像各处浓淡的不同真实反映了样品不同部位的物质结构,因而可用 来分析和研究样品的超微结构 由此可见,在透射电镜中,被观察粒子的大小一定要大于电子束的波长才能被分辨出来, 否则,电子束就会发生绕射,无法看到粒子。这也是电镜的分辨率由电子束波长所决定的原 因之所在 另外,用于透射电镜的标本须制成厚度仅有0.05m的超薄切片,而且由于电子束不能 透过玻璃,因此这种切片需要用用特制的样品托,而不能用普通光镜所用的载玻片 电子枪 聚光镜 束偏转器个投 投影镜 探测器 肉眼直接观察图像图像投到荧光屏上 光镜][透射电镜[扫描电镜] 图2光镜、透射电镜及扫描电镜的成像光路图解 三、电镜的分类 由于不同种类的电镜在结构和使用方法上或多或少都有一定程度的交叉或重叠,因此 要试图把所有各种各样的电镜进行完全合理的分类是十分困难的,但就目前来讲,根据电子 束和样品之间作用方式的不同对电镜进行分类是相对比较合理的一种方法,总的看来,电子 束和样品之间的作用方式有如下四种:1)物体透射电子:2)物体发射电子:3)物体反射电 子;4)物体吸收电子。常用的电镜可分为透射电镜和扫描电镜两大类。透射电镜便属于物体 透射电子的一种类型,应用非常广泛,既可以用来分析生物组织的内部结构,又可以用来研 究金属内部的晶体结构;是当今世界上所用电镜中数量最多的一类,约占现有电镜总数的 90%左右,扫描电镜属于物体发射电子这一类,可以用来观察复杂的表面图像,其焦深和分
璃窗。透过样品的电子打到荧光屏上可显示出反映样品真实结构的图像。由于电子对人眼有 害,故需要通过一个铅玻璃窗来观察,为了观察得更加清晰,在观察室外还配有一放大镜。 鉴于电子形成的荧光图像衰减速度很快,所以一旦观察到理想的结构图像就需要尽快利用照 相装置进行照相。值得注意的是,电镜照相与普通照相不同,图像的反衬度最低时才是正聚 焦,且底片还必须要经过预干燥处理。 2. 透镜电镜的成像原理 透射电镜之所以能获得高分辨率的图像, 主要是因为它解决了两个关键问题, 一是用电 子枪发射出了波长极短的电子波, 二是利用电磁透镜可控制电子的运动轨迹, 即可对电子束 进行聚焦、放大和成像。故透射电镜的有效放大倍数可高达数百万倍。 电子枪发射出的高速电子束在磁场中聚焦,从而被会聚到待观察的样品上;电子束在通 过样品时会发生散射,但由于样品不同部位的质量厚度不同, 即物质的组成结构不同,电子 束发生散射的程度就不同;透过样品后的电子束撞击到荧光屏上,由电能转变成光能,形成 了浓淡不同的图像。此图像各处浓淡的不同真实反映了样品不同部位的物质结构,因而可用 来分析和研究样品的超微结构。 由此可见,在透射电镜中,被观察粒子的大小一定要大于电子束的波长才能被分辨出来, 否则,电子束就会发生绕射,无法看到粒子。这也是电镜的分辨率由电子束波长所决定的原 因之所在。 另外,用于透射电镜的标本须制成厚度仅有 0.05m 的超薄切片,而且由于电子束不能 透过玻璃, 因此这种切片需要用用特制的样品托,而不能用普通光镜所用的载玻片。 图 2 光镜、透射电镜及扫描电镜的成像光路图解 三、电镜的分类 由于不同种类的电镜在结构和使用方法上或多或少都有一定程度的交叉或重叠, 因此 要试图把所有各种各样的电镜进行完全合理的分类是十分困难的, 但就目前来讲, 根据电子 束和样品之间作用方式的不同对电镜进行分类是相对比较合理的一种方法, 总的看来,电子 束和样品之间的作用方式有如下四种: 1) 物体透射电子;2) 物体发射电子;3) 物体反射电 子;4)物体吸收电子。常用的电镜可分为透射电镜和扫描电镜两大类。透射电镜便属于物体 透射电子的一种类型,应用非常广泛,既可以用来分析生物组织的内部结构,又可以用来研 究金属内部的晶体结构; 是当今世界上所用电镜中数量最多的一类, 约占现有电镜总数的 90%左右, 扫描电镜属于物体发射电子这一类, 可以用来观察复杂的表面图像, 其焦深和分 光源 聚光镜 样品 物 镜 目镜 肉眼直接观察图像 投影镜 图像投到荧光屏上 电子枪 探测器 束偏转器 电磁透镜 电磁 透镜 图 像 投 到 视 屏 上 样品 光 镜 透射电镜 扫描电镜