西北大学精品课程·重点课程·学科核心课程 - 无机化学与化学分析 6 s 1 2 1 3.289 10 1 2 2 15 − = × − n v s 1 1 3.289 10 1 2 2 2 1 15 − = × − n n v n=3,4,5,6 n2>n1 因此有里德堡方程式: = ∞ − 2 2 2 1 1 1 n n σ R (2)玻尔理论 玻尔理论的主要假设(P19) (a)核外电子只能在有确定半径和能量的轨道上(空态 stationary states)上运动, 且不辐射能量; (b)通常保持能量最低——基态(ground state) (c)获能量激发——激发态(excited state) (d)从激发态回到基态释放光能 hv = E2 − E1 E:轨道的能量 h E E v 2 − 1 = v:光的频率 h:Planck 常数 玻尔理论的成功之处: ·满意地解释了实验观察的氢原子光谱和类氢原子(He+ , Li2+, B3+)光谱,把 P9Fig.1.5 展开(出现能级 energy level): 波长数据来源 Hα Hβ Hγ Hδ 用玻尔理论的计算值/nm 656.2 486.1 434.0 410.1 实验测得值/nm 656.3 486.1 434.1 410.2 ·说明原子的稳定性; 对其他发光现象(如 X 光的形成)也能给予解释。 X 光:原子获得能量后,最内层 (K 层)的电子被激发跃迁到外层轨道,随后 L 层或 M 层的电子立即跳到 K 层空位,同时 以光子的形式放出能量。因能量大,λ 很小,不可见。 ·计算氢原子的电离能 电子由 n=1→n=∞,即电子脱离原子核的引力。 13.6 1 2 0 2 2 2 2 2 4 ∆ = ∞ − 1 = − = h k mz e E E E π e V (13.6×6.02×1023=1311.6 kJ·mol-1) 实验值 1312 kJ·mol-1
西北大学精品课程·重点课程·学科核心课程 - 无机化学与化学分析 6 s 1 2 1 3.289 10 1 2 2 15 − = × − n v s 1 1 3.289 10 1 2 2 2 1 15 − = × − n n v n=3,4,5,6 n2>n1 因此有里德堡方程式: = ∞ − 2 2 2 1 1 1 n n σ R (2)玻尔理论 玻尔理论的主要假设(P19) (a)核外电子只能在有确定半径和能量的轨道上(空态 stationary states)上运动, 且不辐射能量; (b)通常保持能量最低——基态(ground state) (c)获能量激发——激发态(excited state) (d)从激发态回到基态释放光能 hv = E2 − E1 E:轨道的能量 h E E v 2 − 1 = v:光的频率 h:Planck 常数 玻尔理论的成功之处: ·满意地解释了实验观察的氢原子光谱和类氢原子(He+ , Li2+, B3+)光谱,把 P9Fig.1.5 展开(出现能级 energy level): 波长数据来源 Hα Hβ Hγ Hδ 用玻尔理论的计算值/nm 656.2 486.1 434.0 410.1 实验测得值/nm 656.3 486.1 434.1 410.2 ·说明原子的稳定性; 对其他发光现象(如 X 光的形成)也能给予解释。 X 光:原子获得能量后,最内层 (K 层)的电子被激发跃迁到外层轨道,随后 L 层或 M 层的电子立即跳到 K 层空位,同时 以光子的形式放出能量。因能量大,λ 很小,不可见。 ·计算氢原子的电离能 电子由 n=1→n=∞,即电子脱离原子核的引力。 13.6 1 2 0 2 2 2 2 2 4 ∆ = ∞ − 1 = − = h k mz e E E E π e V (13.6×6.02×1023=1311.6 kJ·mol-1) 实验值 1312 kJ·mol-1
西北大学精品课程·重点课程·学科核心课程 - 无机化学与化学分析 7 2 13.6 h E = − eV 那么,n=1, r1=52.9pm, E1=-13.6 eV n=2, r2=212pm, E2=-3.4 eV n=3, r3=477pm, E3=-1.5 eV M M n=∞ E∞=0 或者:v=3.289×1015 ∞ − 2 2 1 1 1 =3.289×1015 s -1 代入 E=hv=3.289×1015×6.626×10-34 =2.179×10-18(J) 再乘 6.02×10-23 得 1312 kJ·mol-1。 玻尔理论的局限性: ·不能解释精细结构(每条谱线是由二条紧邻的谱线组成) ·不能解释原子光谱在磁场中的分裂 ·不能解释多电子原子的光谱 玻尔(Bohr N H D, 1885-1962)丹麦原子物理学家。1885 年 10 月 7 日出生于哥本哈根,1911 年获物 理学博士学位。随后在剑桥大学卡文迪什实验室工作。1912 年在曼彻斯特卢瑟福实验室工作。1916 年任哥 本哈根大学物理学教授,1920-1956 年任该校理论物理研究所所长。1939-1962 年,任丹麦皇家科学院院长。 还曾为丹麦原子能委员会主席和许多国家的科学院名誉院士。 他的卓越贡献是 1913 年提出玻尔原子模型,成功地解释了氢原子光谱,圆满地解释了元素的周期性。 把化学推进到更深的层次,使物理和化学统一到量子理论的基础上来。该模型的提出,是原子结构理论发 展史上的一个里程碑。虽然原子的波动模型出现后,该模型已过时,但其结果在定性方面还是正确的。1939 年还提出原子核液滴模型,对理解裂变机理有很大帮助。 二次大战期间到美国参加原子弹研制工作。战后,致力于原子能的和平利用。因在研究原子结构和辐 射方面的贡献荣获 1922 年诺言贝尔物理学奖。发表论文 115 篇。主要著作有《原子学说与自然界的描述》 (1939)和《知识的统一性》(1955)。 1.4 波动力学模型——迄今最成功的原子结构模型 1.4.1 测不准原理和波动力学模型轨道概念的形成 a.uncertainty priciple(Heisenberg w) 可通俗地表达为:不可能同时测得电子的精确位置和动量(由于电子具有波粒二象 性) ∆x ⋅ ∆p ≈ h b.从理论上讲,任何运动物体(包括宏观物体)都得服从 Heigenberg principle,但只 有在处理微观世界的运动时,才显得不可忽视。 c.重要暗示:不可能存在 Ruther ford 和 Bohr 模型中行星绕太阳那样的电子轨道! d.重要提示:对于电子衍射的解释,即电子的波动性与微粒行为的统计规律相联系。 人们无法知道每个电子落在感光屏的哪个位置,但统计结果却能显示电子在不同区域出现的 机会,出现机会多(概率较大)的,区域内花纹较深,出现机会少(概率较小)的,区域内
西北大学精品课程·重点课程·学科核心课程 - 无机化学与化学分析 7 2 13.6 h E = − eV 那么,n=1, r1=52.9pm, E1=-13.6 eV n=2, r2=212pm, E2=-3.4 eV n=3, r3=477pm, E3=-1.5 eV M M n=∞ E∞=0 或者:v=3.289×1015 ∞ − 2 2 1 1 1 =3.289×1015 s -1 代入 E=hv=3.289×1015×6.626×10-34 =2.179×10-18(J) 再乘 6.02×10-23 得 1312 kJ·mol-1。 玻尔理论的局限性: ·不能解释精细结构(每条谱线是由二条紧邻的谱线组成) ·不能解释原子光谱在磁场中的分裂 ·不能解释多电子原子的光谱 玻尔(Bohr N H D, 1885-1962)丹麦原子物理学家。1885 年 10 月 7 日出生于哥本哈根,1911 年获物 理学博士学位。随后在剑桥大学卡文迪什实验室工作。1912 年在曼彻斯特卢瑟福实验室工作。1916 年任哥 本哈根大学物理学教授,1920-1956 年任该校理论物理研究所所长。1939-1962 年,任丹麦皇家科学院院长。 还曾为丹麦原子能委员会主席和许多国家的科学院名誉院士。 他的卓越贡献是 1913 年提出玻尔原子模型,成功地解释了氢原子光谱,圆满地解释了元素的周期性。 把化学推进到更深的层次,使物理和化学统一到量子理论的基础上来。该模型的提出,是原子结构理论发 展史上的一个里程碑。虽然原子的波动模型出现后,该模型已过时,但其结果在定性方面还是正确的。1939 年还提出原子核液滴模型,对理解裂变机理有很大帮助。 二次大战期间到美国参加原子弹研制工作。战后,致力于原子能的和平利用。因在研究原子结构和辐 射方面的贡献荣获 1922 年诺言贝尔物理学奖。发表论文 115 篇。主要著作有《原子学说与自然界的描述》 (1939)和《知识的统一性》(1955)。 1.4 波动力学模型——迄今最成功的原子结构模型 1.4.1 测不准原理和波动力学模型轨道概念的形成 a.uncertainty priciple(Heisenberg w) 可通俗地表达为:不可能同时测得电子的精确位置和动量(由于电子具有波粒二象 性) ∆x ⋅ ∆p ≈ h b.从理论上讲,任何运动物体(包括宏观物体)都得服从 Heigenberg principle,但只 有在处理微观世界的运动时,才显得不可忽视。 c.重要暗示:不可能存在 Ruther ford 和 Bohr 模型中行星绕太阳那样的电子轨道! d.重要提示:对于电子衍射的解释,即电子的波动性与微粒行为的统计规律相联系。 人们无法知道每个电子落在感光屏的哪个位置,但统计结果却能显示电子在不同区域出现的 机会,出现机会多(概率较大)的,区域内花纹较深,出现机会少(概率较小)的,区域内