第3章信源编码 ▣3.1信源编码的基本概念 ▣3.2脉冲编码调制 ▣3.3差分脉冲编码调制 ▣3.4增量调制
2 第3章 信源编码 3.1 信源编码的基本概念 3.2 脉冲编码调制 3.3 差分脉冲编码调制 3.4 增量调制
3.1信源编码的基本概念 典型数字通信系统 信源 发送设备 信道 接收设备 信宿 A/D 调制 解调长D/A 抽样 量化 编码 解码 LPF
3 抽样 量化 编码 解码 LPF A/D 调制 解调 D/A 3.1 信源编码的基本概念 典型数字通信系统 信源 发送设备 信道 接收设备 信宿
3.2脉冲编码调制 ▣脉冲编码调制(PCM)的基本原理 把从模拟信号抽样、量化,直到变换成为 进制符号的基本过程,简称脉码调制。 模拟信号 PCM信号 输入 输出 抽样保持电路 量化器 编码器 信道 噪声 模拟信号 低通滤波器 译码器 输出
4 3.2 脉冲编码调制 脉冲编码调制(PCM)的基本原理 把从模拟信号抽样、量化,直到变换成为 二进制符号的基本过程,简称脉码调制
3.2.1抽样与抽样定理 低通信号抽样定理 一个频带限制在0到财以内的低通信号x(), 如果以∫≥f的抽样速率进行均匀抽样, 则x()可以有抽样后的信号完全确定。 最小抽样速率∫=2f称为奈奎斯特速率, 最大抽样时间间隔1/2f称为奈奎斯特间隔。 5
5 低通信号抽样定理 3.2.1 抽样与抽样定理 一个频带限制在0到fH以内的低通信号x(t) , 如果以 fs 2fH 的抽样速率进行均匀抽样, 则x(t)可以有抽样后的信号完全确定。 最小抽样速率 f s =2fH 称为奈奎斯特速率, 最大抽样时间间隔 1/2fH 称为奈奎斯特间隔
理想抽样与信号的恢复 m() X m,() m,() 低通 m() 浅波器 G() (b) (a)· 6
6 理想抽样与信号的恢复