@磁共起 (2)双键化合物的各向异性 乙烷质子0.96 乙烯质子5.84 C C H H H I 烯碳sp2杂化,C-H键电子更靠近碳,对质子的屏蔽↓ 22)产生感应磁场,质子恰好在去屏蔽区
(2) 双键化合物的各向异性 乙烷质子 0.96 乙烯质子 5.84 1) 烯碳sp2杂化, C-H键电子更靠近碳,对质子的屏蔽 *2) 产生感应磁场,质子恰好在去屏蔽区
@磁共起 3)三键化合物时各向异 C I R 1)炔碳为sp杂化,相对sp2和sp3杂化的CH键电子 更靠近碳,使质子周围的电子云密度减少,质子 共振吸收向低场移动 22)炔碳质子处在屏蔽区,炔氢共振应出现在较高 的磁场强度区 炔质子的化学位移值为2.88
(3) 三键化合物的各向异性 1)炔碳为sp杂化,相对sp2和sp3杂化的C-H键电子 更靠近碳,使质子周围的电子云密度减少,质子 共振吸收向低场移动 * 2)炔碳质子处在屏蔽区,炔氢共振应出现在较高 的磁场强度区 炔质子的化学位移值为2.88
@磁共起 3.氢键的影响 氢键的形成可以削弱对氢键质子的屏蔽, 使共振吸收移向低场 醇羟基 0.5~5 酚胺 0.5~5 羧酸 10~13 二聚体形式(双分子的氢键)
3. 氢键的影响 氢键的形成可以削弱对氢键质子的屏蔽, 使共振吸收移向低场 醇羟基 0.5~5 酚 4~7 胺 0.5~5 羧酸 10~13 二聚体形式(双分子的氢键)
@磁共起 分子内氢键同样可以影响质子的共振吸收 β-二酮烯醇式分子内氢键 R CH R β-二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移8为11~16
分子内氢键同样可以影响质子的共振吸收 -二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移为11~16