寻找对方案和能标变化的稳定点 任意物理量可定义有效荷=>有效能标 ===============================================5H Any observable <- an effective coupling constant (dea useful)I Optimized perturbation theory Fastest Apparent Convergence(FAC l minimize the higher-order contributions- PMS How about directly set it to satisfy the RG invariance How about directly cut off all higher-order-terms =======================================================1 早期解决方案=寻找最优能标 典型 四类 tEEa =============== 所有真空极化图贡献 = 相加确定能标 Using rge GML案 Runs fromμ BLM=> nf-term QED不存在重整化能标: e.g. USIng a5u2a)+… ED极限=GML方案 设定问题 n"=== ======== ======= (csR=>解决方案不确定性 1/137-本身数倒小
早期解决方案=寻找最优能标 Optimized perturbation theory – minimize the higher-order contributions – PMS How about directly set it to satisfy the RG invariance 寻找对方案和能标变化的稳定点 BLM=> nf-term QED极限=GM-L方案 CSR=>解决方案不确定性 Any observable <=> an effective coupling constant (idea useful) Fastest Apparent Convergence (FAC) How about directly cut off all higher-order-terms ? 任意物理量可定义有效荷=>有效能标 Using RGE Runs from 1 -> 2 e.g. using s (1 )=s (2 )+… 典型 四类
Questions for previous solutions PMS一破坏标准重整化群不变性,只能近似有效 FAC-由实验反定,破坏理论预言能力 BLM-单圈成功,但如何拓展到高圈,有不少失败尝试 如 seBUM等等一-基于大βo近似,目的变为提高微扰收敛性 RGE一降低依赖,未解决问题,一般用于估算未知高阶(RG- improved) 新一轮尝试:真正解决重整化 能标及重整化方案不确定性 最大共形原理一PMc 可以选择任意初始重整化能标、重整化方案完成微扰论计算;但经过PMC能标设定 步骤之后,最终获得的微扰表达式与初始重整化能标和重整化方案的选择无关 优点: 1)可确定正确“物理”动量流动值一与初始能标选择无关,但不同方案下得到的动 量流动值不一样,与共形系数相匹配=>CSR=>总预言与重整化方案无关 )可自然改善微扰收敛性、可更好估箅未知高阶贡献
Questions for previous solutions PMS - 破坏标准重整化群不变性,只能近似有效 FAC - 由实验反定,破坏理论预言能力 BLM - 单圈成功,但如何拓展到高圈,有不少失败尝试: 如seBLM等等--基于大0近似,目的变为提高微扰收敛性 RGE -降低依赖,未解决问题,一般用于估算未知高阶(RG-improved) 新一轮尝试:真正解决重整化 能标及重整化方案不确定性 最大共形原理-PMC 可以选择任意初始重整化能标、重整化方案完成微扰论计算;但经过PMC能标设定 步骤之后,最终获得的微扰表达式与初始重整化能标和重整化方案的选择无关 优点: I)可确定正确“物理”动量流动值-与初始能标选择无关,但不同方案下得到的动 量流动值不一样,与共形系数相匹配=> CSR => 总预言与重整化方案无关 II)可自然改善微扰收敛性、可更好估算未知高阶贡献
Two equivalent ways to achieve the goal of PMC Multi-scale scale-sefting approach Single-scale scale-setting approach Key: Based on the RGe, achieving the correct beta-series at each order p(Q)=n10a(pP+20+m2l()+1+0+mm2x+(+1)1+pp+1) B32|a()2 +{0+p2+(p+1)31+24132+(p+2)1+ (p+1)(p+2) 6r4,2 p(p+1)(p+2) 3! n3a()+3 利用已知β项一类似于重求和一可准确确定耦合常数值 ∑ Man+i-1 (QM.D+ p(Q)=∑n0a(Q)y+n- i.O s Residual scale dependence Relatively large
Two equivalent ways to achieve the goal of PMC Multi-scale scale-setting approach Single-scale scale-setting approach Key: Based on the RGE, achieving the correct beta-series at each order 利用已知项-类似于重求和-可准确确定耦合常数值 Residual scale dependence Relatively large
Recent PMC applications e-J/+ne Zhan Sun, Yang Ma, XGW,SJB PRD2018 mass collision energy vs= 10.58 GeV [1 L○ NRQCD prediction Belle lete→J+×B24=36+9 2.3-5.5fb oete→J/p+nlxB2=25.6±28±3.4 BaBr176±281tb3 NLO-prediction can explain the data 14 Y J. Zhang, Y j. Gao and K. T Chao, Phys. Rev. Lett But strongly scale dependent 96.092001(2006) 15 B. Gong and J. X. Wang, Phys. Rev. D 77, 05-4028 Guessing: Hr 2-3 GeV Bell PMC scale Why such guessing Q1=Q2=2.30GeV scale is correct Babar 0+o +) PMC works
Recent PMC applications NLO-prediction can explain the data But strongly scale dependent Guessing: Belle BaBar LO-NRQCD prediction Why such guessing scale is correct? PMC scale Zhan Sun, Yang Ma, XGW, SJB PRD2018 PMC works