第十四章活着一- Survival菜单详解(下) (医学统计之星:董伟) Cox Regression过程 上面给大家介绍的是两种生存分析方法,但它们只能研究一至两个因素对生 存时间的影响,当对生存时间的影响因素有多个时,它们就无能为力了,下面我 给大家介绍 Cox Regression过程,这是一种专门用于生存时间的多变量分析的 统计方法 Cox Regression过程主要用于: 1、用以描述多个变量对生存时间的影响。此时可控制一个或几个因素,考 察其他因素对生存时间的影响,及各因素之间的交互作用 例13.340名肺癌患者的生存资料(详见胡克震主编的《医学随访统计方法》 1993,77页) 生存时间状态生活能力评分年龄诊断到研究时间鱗癌小细胞癌腺癌法癌症类别 411 l18 注:原数据库是用亚变量定义肺癌分类:0,0,0为其它癌;1,0,0为鳞癌; 0,1,0为小细胞癌;0,0,1为腺癌。表中的最后一个变量是我加上去的癌症 类别,1为鳞癌;2为小细胞癌;3为腺癌:4为其它癌。实践表明结果与用亚变 量计算一样 13.3.1 界面说明
第十四章 活着--Survival 菜单详解(下) (医学统计之星:董伟) Cox Regression 过程 上面给大家介绍的是两种生存分析方法,但它们只能研究一至两个因素对生 存时间的影响,当对生存时间的影响因素有多个时,它们就无能为力了,下面我 给大家介绍 Cox Regression 过程,这是一种专门用于生存时间的多变量分析的 统计方法。 Cox Regression 过程主要用于: 1、 用以描述多个变量对生存时间的影响。此时可控制一个或几个因素,考 察其他因素对生存时间的影响,及各因素之间的交互作用。 例 13.3 40 名肺癌患者的生存资料(详见胡克震主编的《医学随访统计方法》 1993,77 页) 生存时间状态生活能力评分年龄诊断到研究时间鳞癌小细胞癌腺癌疗法癌症类别 411 1 70 64 5 1 0 0 1 1.00 126 1 60 63 9 1 0 0 1 1.00 118 1 70 65 11 1 0 0 1 1.00 注:原数据库是用亚变量定义肺癌分类:0,0,0 为其它癌;1,0,0 为鳞癌; 0,1,0 为小细胞癌;0,0,1 为腺癌。表中的最后一个变量是我加上去的癌症 类别,1 为鳞癌;2 为小细胞癌;3 为腺癌;4 为其它癌。实践表明结果与用亚变 量计算一样。 13.3.1 界面说明
OK t survival time(day) Itime 诊断到研宄时间(月) Paste 秒磷癌k Status: 小细胞瘤國5 status(1) Reset 腺癌6 秒疗法 Detine Event. Cancel Previous Block 1 of 1 Help Covariates Categorical.… Plots Method: Save... Strata: Options. 图9 Cox回归主对话框 【Time】框、【 Status】框前文已经介绍过了,这里我就不再废话唠叨的了。 Block 1 of1右边的Next钮被激活。这个按钮用于确定不同自变量进入回归方 程的方法,详见 Method框的内容。用同一种方法进入回归方程的自变量在同 个 Covariates框内。 【 Covariates】框 选入自/协变量,即选入你认为可能对生存时间有影响的变量。 【 Method】框 选择自变量进入Cox回归方程的方法,SPSS提供下面几种方法: Enter: Covariates框内的全部变量均进入回归模型 Forward: Conditional:基于条件参数估计的向前法。 Forward:LR:基于偏最大似然估计的向前法。 Forward:Wald:基于Wald统计量的向前法。 Backward: Conditional:基于条件参数估计的后退法。 · Backward:LR:基于偏最大似然估计的后退法 · Backward:Wald:基于wald统计量的后退法。 【 Strata】框 定义分层因素,将生存时间按分层因素分别进行Cox回归
图 9 Cox 回归主对话框 【Time】框、【Status】框前文已经介绍过了,这里我就不再废话唠叨的了。 Block 1 of 1 右边的 Next 钮被激活。这个按钮用于确定不同自变量进入回归方 程的方法,详见 Method 框的内容。用同一种方法进入回归方程的自变量在同一 个 Covariates 框内。 【Covariates】框 选入自/协变量,即选入你认为可能对生存时间有影响的变量。 【Method】框 选择自变量进入 Cox 回归方程的方法,SPSS 提供下面几种方法: • Enter: Covariates 框内的全部变量均进入回归模型。 • Forward: Conditional: 基于条件参数估计的向前法。 • Forward: LR: 基于偏最大似然估计的向前法。 • Forward: Wald: 基于 Wald 统计量的向前法。 • Backward: Conditional: 基于条件参数估计的后退法。 • Backward: LR: 基于偏最大似然估计的后退法。 • Backward: Wald: 基于 Wald 统计量的后退法。 【Strata】框 定义分层因素,将生存时间按分层因素分别进行 Cox 回归
【 Categorical】选项 用于告诉系统, Covariates框内的变量中哪些是分类变量或字符型变量。系 统默认字符型变量为分类变量,数字型变量为连续型变量。 选入自变量后, categorical钮被激活。按 categorical钮,进入确定分类 变量的对话框。见图10。 Cox Regressio e上1e Categorical Covariate Covariates: Categorical Covariates Continue x8(Indicator 2 Cancel Help Change Contrast Contrast:Indicator Change Reference Category: Last First 图10确定分类变量对话框 左边的 Covariates框中列出了刚刚被选取的自变量,将分类变量选入 Categorical Covariates框中。此时 Change Contrast框被激活,请你选择比 较方法,即计算参数OR/β的方法。当选入分类变量后, Change Contrast框被 激活,此时可选择比较方法。SPSS提供下面几种比较方法 · Indicator:指示对比。用于指定某一分类变量的基线,即参照水平。这 样计算出来的参数OR/βi是以该变量的第一个或最后一个水平为基准水 P(取决于下面的 reference category中你选择的是1ast还是 first)。 在这里SPSS自动创建亚变量,对照水平在对比分类矩阵中用0行代表。 在这里我再多说两句,如本例中的肿瘤类型,若规定鳞癌为1,小细胞癌 为2,腺癌为3,其它癌为4。若选 indicator及last,则以其它癌为参照, 计算出来的0R及Bi是以其它癌为基准,即其它癌的OR为1,其他计算 出来的OR值是与其它癌相比的结果。 Simple:差别对比。可计算该分类变量的各水平与参照水平相比的OR值。 参照水平自己当然就不用跟自己相比了。对于本例来说, Simple与 Indicator选项是一样的,前提是下面的 Reference Category中你所选 择的同是last(或 first)
【Categorical】选项 用于告诉系统,Covariates 框内的变量中哪些是分类变量或字符型变量。系 统默认字符型变量为分类变量,数字型变量为连续型变量。 选入自变量后,categorical 钮被激活。按 categorical 钮,进入确定分类 变量的对话框。见图 10。 图 10 确定分类变量对话框 左边的 Covariates 框中列出了刚刚被选取的自变量,将分类变量选入 Categorical Covariates 框中。此时 Change Contrast 框被激活,请你选择比 较方法,即计算参数 OR/βi的方法。当选入分类变量后,Change Contrast 框被 激活,此时可选择比较方法。SPSS 提供下面几种比较方法。 • Indicator:指示对比。用于指定某一分类变量的基线,即参照水平。这 样计算出来的参数 OR/βi 是以该变量的第一个或最后一个水平为基准水 平(取决于下面的 reference category 中你选择的是 last 还是 first)。 在这里 SPSS 自动创建亚变量,对照水平在对比分类矩阵中用 0 行代表。 在这里我再多说两句,如本例中的肿瘤类型,若规定鳞癌为 1,小细胞癌 为 2,腺癌为 3,其它癌为 4。若选 indicator 及 last,则以其它癌为参照, 计算出来的 OR 及βi 是以其它癌为基准,即其它癌的 OR 为 1,其他计算 出来的 OR 值是与其它癌相比的结果。 • Simple:差别对比。可计算该分类变量的各水平与参照水平相比的 OR 值。 参照水平自己当然就不用跟自己相比了。对于本例来说,Simple 与 Indicator 选项是一样的,前提是下面的 Reference Category 中你所选 择的同是 last(或 first)
Difference:差别对比。分类变量欲比较水平与其前面的各水平平均值进 行比较,当然也不包括第一水平。与 Helmert法相反,因此也叫反 Helmert 法。如3水平与1、2水平的平均值相比,下同。 Helmert:赫尔默特对比。分类变量欲比较水平与其后面各水平平均值 进行比较,当然不包括最后一个水平 Repeated:重复对比。分类变量的各水平与其前面相邻的水平相比较 (第一水平除外) Polynomial:多项式对比。仅用于数字型的分类变量。无效假设是假设 各水平是等距离的(可以是线性的关系,也可以是立方、四次方的关系) 例如年龄每增加10岁,死亡风险的增加值是一样的,但实际情况常常与 此相反,如在20岁与60岁年龄段,年龄都增加10岁,所增加的死亡风 险肯定是不一样的,具体情况需根据各人的研究课题,专业而定。 Deviation:离差对比。除了所规定的参照水平外,其余每个水平均与 总体水平相比 Reference category:如果你选择了 Deviation, Simple,或 Indicator 三个选项,就必须选择 First或Last作为参照水平。 完成上述选择后,击 change钮,确认选择。 D你若对上面写的一段不感兴趣的话,可跳过去,直接用系统默认的选项。 【 Plots】选项 Cox Regression: Plots Plot T Continue v Survival M Hazard M Log minus log One minus survival ance Covariate Values Plotted at: Help ×1Mean Separate Lines for x2(Mean) X3(Mean X7(Mean x8(Cat)(Mean Change value C Mean C value 图11 Cox回归统计图对话框 y Survival:累积生存函数曲线
• Difference:差别对比。分类变量欲比较水平与其前面的各水平平均值进 行比较,当然也不包括第一水平。与 Helmert 法相反,因此也叫反 Helmert 法。如 3 水平与 1、2 水平的平均值相比,下同。 • Helmert:赫尔默特对比。分类变量欲比较水平与其后面各水平平均值 进行比较,当然不包括最后一个水平。 • Repeated:重复对比。分类变量的各水平与其前面相邻的水平相比较 (第一水平除外)。 • Polynomial:多项式对比。仅用于数字型的分类变量。无效假设是假设 各水平是等距离的(可以是线性的关系,也可以是立方、四次方的关系)。 例如年龄每增加 10 岁,死亡风险的增加值是一样的,但实际情况常常与 此相反,如在 20 岁与 60 岁年龄段,年龄都增加 10 岁,所增加的死亡风 险肯定是不一样的,具体情况需根据各人的研究课题,专业而定。 • Deviation:离差对比。除了所规定的参照水平外,其余每个水平均与 总体水平相比。 • Reference category:如果你选择了 Deviation, Simple, 或 Indicator 三个选项,就必须选择 First 或 Last 作为参照水平。 完成上述选择后,击 change 钮,确认选择。 你若对上面写的一段不感兴趣的话,可跳过去,直接用系统默认的选项。 【Plots】选项 图 11 Cox 回归统计图对话框 Survival:累积生存函数曲线
Hazard:累积风险函数曲线 卩 Log minus log:对数累积生存函数乘以-1后再取对数。 One minus survival:生存函数被1减后的曲线。 Change Value:系统默认用各变量的均数进行作图,但对字符型变量如 癌症类型取均值则没有实际意义。若用分类变量的其它水平进行作图,则 选定该变量,此时 Change Value钮被激活,按 Value钮,在其右边的框 内输入你所想要用于作图的值。击 Change。 Separate Line for:输入分类变量的名称,此时可以用分类变量的不 同水平进行作图,对于本例则可作出不同癌症的曲线。此分类变量必须包 括在前面的自变量框中。 【Save】存为新变量 Co Regression: Save Her Variables Survival Diagnostics Continue 厂 Hazard function 厂 Standard error Partial residuals Cancel 厂 Log minus log 厂 DfBeta[s Help 图12 Cox回归存为新变量对话框 Survival:生存函数 问 Function:累积生存函数估计值 Standard error:累积生存函数估计值的标准误。 Log minus log:对数累积生存函数乘以-1后再取对数。 Diagnostics:回归诊断。 Hazard function Cox- Snell:残差。 Partial residual:偏残差。 Dfbeta(s):剔除某一观察单位后的回归系数变化量。 X*Beta:线性预测得分。 【 Options】选项 击 Options按钮,弹出选项对话框
Hazard:累积风险函数曲线。 Log minus log:对数累积生存函数乘以-1 后再取对数。 One minus survival:生存函数被 1 减后的曲线。 • Change Value:系统默认用各变量的均数进行作图,但对字符型变量如 癌症类型取均值则没有实际意义。若用分类变量的其它水平进行作图,则 选定该变量,此时 Change Value 钮被激活,按 Value 钮,在其右边的框 内输入你所想要用于作图的值。击 Change。 • Separate Line for:输入分类变量的名称,此时可以用分类变量的不 同水平进行作图,对于本例则可作出不同癌症的曲线。此分类变量必须包 括在前面的自变量框中。 【Save】存为新变量 图 12 Cox 回归存为新变量对话框 ⚫ Survival:生存函数。 Function:累积生存函数估计值。 Standard error:累积生存函数估计值的标准误。 Log minus log:对数累积生存函数乘以-1 后再取对数。 ⚫ Diagnostics:回归诊断。 Hazard function Cox-Snell:残差。 Partial residual:偏残差。 Dfbeta(s):剔除某一观察单位后的回归系数变化量。 X*Beta:线性预测得分。 【Options】选项 击 Options 按钮,弹出选项对话框