〔〕理论部分 1.绪论 欢迎同学们到生物化学实验室来!对于大多数学生来说,这不是第一次做化学实验, 但是我们相信,生物化学实验一定是大家最感兴趣、最激动人心的实验,当然也是花费 最大、最辛苦的实验。同学们在过去几年中所学到的各种实验技术和操作技能,在这些 实验中将会经常用到,当然更重要的是要学会一些新的、在生物化学的科学研究中最常 用的实验方法。同学们在生物化学实验方面要取得好成绩,在很大程度上,取决于你们 对这些专门化实验技术的熟练掌握和对生物化学原理的深入了解。 当同学们进行实验时,无疑将会与以前做的各种实验进行比较。在生物化学实验中 大家会发现,极少有像无机化学和有机化学实验那样进行化学反应和分离出“克”数量 级的产物。同学们将进行的是“毫克”和“微克”数量级的研究,并且在多数情况下 生物分子是溶解在溶液中的,而且往往看不到所研究的物质,但是将会看到动态的生物 化学过程和由生物分子引起的生物化学变化。实验中所用到的各种技术和方法,将起到 “眼睛”的作用,用以对各种生物化学过程进行监测。 同学们通过生物化学实验应该做到:①学习设计一个实验的基本思路,掌握各个实 验的基本原理,学会严密地组织自己的实验,合理地安排实验步骤和时间。②训练实验 的动手能力,学会熟练地使用各种生物化学实验仪器,包括各种天平、各种分光光度计 各种离心机、自动部分收集器、恒流泵、核酸蛋白检测仪、冰冻干燥机、酸度计、电导 率仪、高速分散器、各种电泳装置和摇床等等。③学会准确翔实地记录实验现象和数据 的技能,提髙实验报告的写作能力,能够整齐清洁地进行所有的实验,培养严谨细致的 科学作风。④掌握生物化学的各种基本实验方法和实验技术,尤其是各种电泳技术和层 析枝术,为今后参加科研工作打下坚实的基础 预祝同学们以优异的成绩跨进这一新的科学殿堂,成为攀登生物科学高峰的新的勇 11生物化学实验技术发展简史 生物科学在20世纪有惊人的发展,其中生物化学与分子生物学的进展尤为迅速 这样一门最具活力和生气的实验科学,在21世纪必将成为带头的学科,这主要有赖于 生物化学与分子生物学实验技术的不断发展和完善。这里我们简单回顾一下生物化学实
1 〔Ⅰ〕 理论部分 1. 绪论 欢迎同学们到生物化学实验室来!对于大多数学生来说,这不是第一次做化学实验, 但是我们相信,生物化学实验一定是大家最感兴趣、最激动人心的实验,当然也是花费 最大、最辛苦的实验。同学们在过去几年中所学到的各种实验技术和操作技能,在这些 实验中将会经常用到,当然更重要的是要学会一些新的、在生物化学的科学研究中最常 用的实验方法。同学们在生物化学实验方面要取得好成绩,在很大程度上,取决于你们 对这些专门化实验技术的熟练掌握和对生物化学原理的深入了解。 当同学们进行实验时,无疑将会与以前做的各种实验进行比较。在生物化学实验中, 大家会发现,极少有像无机化学和有机化学实验那样进行化学反应和分离出“克”数量 级的产物。同学们将进行的是“毫克”和“微克”数量级的研究,并且在多数情况下, 生物分子是溶解在溶液中的,而且往往看不到所研究的物质,但是将会看到动态的生物 化学过程和由生物分子引起的生物化学变化。实验中所用到的各种技术和方法,将起到 “眼睛”的作用,用以对各种生物化学过程进行监测。 同学们通过生物化学实验应该做到:①学习设计一个实验的基本思路,掌握各个实 验的基本原理,学会严密地组织自己的实验,合理地安排实验步骤和时间。②训练实验 的动手能力,学会熟练地使用各种生物化学实验仪器,包括各种天平、各种分光光度计、 各种离心机、自动部分收集器、恒流泵、核酸蛋白检测仪、冰冻干燥机、酸度计、电导 率仪、高速分散器、各种电泳装置和摇床等等。③学会准确翔实地记录实验现象和数据 的技能,提高实验报告的写作能力,能够整齐清洁地进行所有的实验,培养严谨细致的 科学作风。④掌握生物化学的各种基本实验方法和实验技术,尤其是各种电泳技术和层 析枝术,为今后参加科研工作打下坚实的基础。 预祝同学们以优异的成绩跨进这一新的科学殿堂,成为攀登生物科学高峰的新的勇 士! 1.1 生物化学实验技术发展简史 生物科学在 20 世纪有惊人的发展,其中生物化学与分子生物学的进展尤为迅速, 这样一门最具活力和生气的实验科学,在 21 世纪必将成为带头的学科,这主要有赖于 生物化学与分子生物学实验技术的不断发展和完善。这里我们简单回顾一下生物化学实
验技术的发展历史 20年代:微量分析技术导致了维生素、激素和辅酶等的发现。瑞典著名的化学家 TSvedberg奠基了“超离心技术”,1924年制成了第一台5000×g(500r/min~8000 r/min)相对离心力的超离心机(相对离心力RCF”的单位可表示为“×g”),开创了生化物 质离心分离的先河,并准确测定了血红蛋白等复杂蛋白质的分子量,获得了1926年的 诺贝尔化学奖。 30年代:电子显微镜技术打开了微观世界,使我们能够看到细胞内的结构和生物 大分子的内部结构 40年代:层析技术大发展,两位英国科学家 Martin和 Synge发明了分配色谱(层 析),他们获得了1952年的诺贝尔化学奖。由此,层析技术成为分离生化物质的关键技 术 “电泳技术”是由瑞典的著名科学家 Tiselius所奠基,从而开创了电泳技术的新时 代,他因此获得了1948年的诺贝尔化学奖。 50年代:自1935年 Schoenheimer和 Rittenberg首次将放射性同位素示踪用于碳水 化合物及类脂物质的中间代谢的研究以后,“放射性同位素示踪技术”在50年代有了大 的发展,为各种生物化学代谢过程的阐明起了决定性的作用。 60年代:各种仪器分析方法用于生物化学研究,取得了很大的发展,如HPLC技 术、红外、紫外、圆二色等光谱技术、NMR核磁共振技术等。自1958年Stem,More 和 Spackman设计出氨基酸自动分析仪,大大加快了蛋白质的分析工作。1967年 Edman 和Begg制成了多肽氨基酸序列分析仪,到1973年 Moore和sten设计出氨基酸序列自 动测定仪,又大大加快了对多肽一级结构的测定,十多年间氨基酸的自动测定工作得到 了很大的发展和完善。 1962年,美国科学家 Watson和英国科学家 Crick因为在1953年提出的DNA分子 反向平行双螺旋模型而与英国科学家 Wilkins分享了当年的诺贝尔生理医学奖,后者通 过对DNA分子的X射线衍射研究证实了 Watson和 Crick的DNA模型,他们的研究成 果开创了生物科学的历史新纪元。在X射线衍射技术方面,英国物理学家 Perutz对血 红蛋白的结构进行X-射线结构分析, Kendrew测定了肌红蛋白的结构,成为研究生物大 分子空间立体结构的先驱,他们同获1962年诺贝尔化学奖。 此外,在60年代,层析和电泳技术又有了重大的进展,在1968-1972年 Anfinsen 创建了亲和层析技术,开辟了层析技术的新领域。1969年 Weber应用SDS-聚丙烯酰胺
2 验技术的发展历史。 20 年代: 微量分析技术导致了维生素、激素和辅酶等的发现。瑞典著名的化学家 T.Svedberg 奠基了“超离心技术”,1924 年制成了第一台 5000×g(5000 r/min~8000 r/min)相对离心力的超离心机(相对离心力“RCF”的单位可表示为“×g”),开创了生化物 质离心分离的先河,并准确测定了血红蛋白等复杂蛋白质的分子量,获得了 1926 年的 诺贝尔化学奖。 30 年代: 电子显微镜技术打开了微观世界,使我们能够看到细胞内的结构和生物 大分子的内部结构。 40 年代: 层析技术大发展,两位英国科学家 Martin 和 Synge 发明了分配色谱(层 析),他们获得了 1952 年的诺贝尔化学奖。由此,层析技术成为分离生化物质的关键技 术。 “电泳技术”是由瑞典的著名科学家 Tisellius 所奠基,从而开创了电泳技术的新时 代,他因此获得了 1948 年的诺贝尔化学奖。 50 年代:自 1935 年 Schoenheimer 和 Rittenberg 首次将放射性同位素示踪用于碳水 化合物及类脂物质的中间代谢的研究以后,“放射性同位素示踪技术”在 50 年代有了大 的发展,为各种生物化学代谢过程的阐明起了决定性的作用。 60 年代: 各种仪器分析方法用于生物化学研究,取得了很大的发展,如 HPLC 技 术、红外、紫外、圆二色等光谱技术、NMR 核磁共振技术等。自 1958 年 Stem,Moore 和 Spackman 设计出氨基酸自动分析仪,大大加快了蛋白质的分析工作。1967 年 Edman 和 Begg 制成了多肽氨基酸序列分析仪,到 1973 年 Moore 和 Stein 设计出氨基酸序列自 动测定仪,又大大加快了对多肽一级结构的测定,十多年间氨基酸的自动测定工作得到 了很大的发展和完善。 1962 年,美国科学家 Watson 和英国科学家 Crick 因为在 1953 年提出的 DNA 分子 反向平行双螺旋模型而与英国科学家 Wilkins 分享了当年的诺贝尔生理医学奖,后者通 过对 DNA 分子的 X-射线衍射研究证实了 Watson 和 Crick 的 DNA 模型,他们的研究成 果开创了生物科学的历史新纪元。在 X-射线衍射技术方面,英国物理学家 Perutz 对血 红蛋白的结构进行 X-射线结构分析, Kendrew 测定了肌红蛋白的结构,成为研究生物大 分子空间立体结构的先驱,他们同获 1962 年诺贝尔化学奖。 此外,在 60 年代,层析和电泳技术又有了重大的进展,在 1968—1972 年 Anfinsen 创建了亲和层析技术,开辟了层析技术的新领域。1969 年 Weber 应用 SDS-聚丙烯酰胺
凝胶电泳技术测定了蛋白质的分子量,使电泳技术取得了重大进展 70年代:基因工程技术取得了突破性的进展,Aber,Smth和 Nathans三个小组 发现并纯化了限制性内切酶,1972年,美国斯坦福大学的Berg等人首次用限制性内切 酶切割了DNA分子,并实现了DNA分子的重组。1973年,又由美国斯坦福大学的 Cohen 等人第一次完成了DNA重组体的转化技术,这一年被定为基因工程的诞生年, Cohen 成为基因工程的创始人,从此,生物化学进入了一个新的大发展时期。与此同时,各种 仪器分析手段进一步发展,制成了DNA序列测定仪、DNA合成仪等。 80至90年代:基因工程技术进入辉煌发展的时期,1980年,英国剑桥大学的生 物化学家 Sanger和美国哈佛大学的 Gilbert分别设计出两种测定DNA分子内核苷酸序 列的方法,而与Berg共获诺贝尔化学奖,从此,DNA序列分析法成为生物化学与分子 生物学最重要的研究手段之一。他们3人在DNA重组和RNA结构研究方面都作出了 杰出的贡献 1981年由 Jorgenson和 Lukacs首先提出的高效毛细管电泳技术(HPCE),由于其 高效、快速、经济,尤其适用于生物大分子的分析,因此受到生命科学、医学和化学等 学科的科学工作者的极大重视,发展极为迅速,是生化实验技术和仪器分析领域的重大 突破,意义深远。现今,由于HPCE技术的异军突起,HPLC技术的发展重点己转到制 备和下游技术。 1984年德国科学家 Kohler、美国科学家 Milstein和丹麦科学家Jene由于发展了单 克隆抗体技术,完善了极微量蛋白质的检测技术而共享了诺贝尔生理医学奖。 1985年美国加利福尼亚州 Cetus公司的 Mullis等发明了PCR技术( Polymerase Chain Reaction)即聚合酶链式反应的DNA扩增技术,对于生物化学和分子生物学的研究工 作具有划时代的意义,因而与第一个设计基因定点突变的 Smith共享1993年的诺贝尔 化学奖 除上述历史以外,还可以列出许多生物化学发展史上的重要成就,例如 美国哈佛大学的 Folin教授和中国的吴宪教授对生物化学常用的各种分析方法(血 糖分析、蛋白质含量分析、氨基酸测定等)的建立作出了历史性的贡献 美国化学家 Pauling确认氢键在蛋白质结构中以及生物大分子间相互作用的重要性 等,他获得了诺贝尔化学奖 英藉德裔生物化学家 Krebs,在1937年发现了三羧酸循环,对细胞代谢及分子生物 学的研究作出了重要贡献,他与美藉德裔生物化学家 Lipman共获1953年诺贝尔生理
3 凝胶电泳技术测定了蛋白质的分子量,使电泳技术取得了重大进展。 70 年代: 基因工程技术取得了突破性的进展,Arber,Smith 和 Nathans 三个小组 发现并纯化了限制性内切酶,1972 年,美国斯坦福大学的 Berg 等人首次用限制性内切 酶切割了 DNA 分子,并实现了 DNA 分子的重组。1973 年,又由美国斯坦福大学的 Cohen 等人第一次完成了 DNA 重组体的转化技术,这一年被定为基因工程的诞生年,Cohen 成为基因工程的创始人,从此,生物化学进入了一个新的大发展时期。与此同时,各种 仪器分析手段进一步发展,制成了 DNA 序列测定仪、DNA 合成仪等。 80 至 90 年代: 基因工程技术进入辉煌发展的时期,1980 年,英国剑桥大学的生 物化学家 Sanger 和美国哈佛大学的 Gilbert 分别设计出两种测定 DNA 分子内核苷酸序 列的方法,而与 Berg 共获诺贝尔化学奖,从此,DNA 序列分析法成为生物化学与分子 生物学最重要的研究手段之一。他们 3 人在 DNA 重组和 RNA 结构研究方面都作出了 杰出的贡献。 1981 年由 Jorgenson 和 Lukacs 首先提出的高效毛细管电泳技术(HPCE),由于其 高效、快速、经济,尤其适用于生物大分子的分析,因此受到生命科学、医学和化学等 学科的科学工作者的极大重视,发展极为迅速,是生化实验技术和仪器分析领域的重大 突破,意义深远。现今,由于 HPCE 技术的异军突起,HPLC 技术的发展重点己转到制 备和下游技术。 1984 年德国科学家 Kohler、美国科学家 Milstein 和丹麦科学家 Jerne 由于发展了单 克隆抗体技术,完善了极微量蛋白质的检测技术而共享了诺贝尔生理医学奖。 1985年美国加利福尼亚州Cetus公司的 Mullis等发明了PCR技术(Polymerase Chain Reaction)即聚合酶链式反应的 DNA 扩增技术,对于生物化学和分子生物学的研究工 作具有划时代的意义,因而与第一个设计基因定点突变的 Smith 共享 1993 年的诺贝尔 化学奖。 除上述历史以外,还可以列出许多生物化学发展史上的重要成就,例如: 美国哈佛大学的 Folin 教授和中国的吴宪教授对生物化学常用的各种分析方法(血 糖分析、蛋白质含量分析、氨基酸测定等)的建立作出了历史性的贡献。 美国化学家 Pauling 确认氢键在蛋白质结构中以及生物大分子间相互作用的重要性 等,他获得了诺贝尔化学奖。 英藉德裔生物化学家 Krebs,在 1937 年发现了三羧酸循环,对细胞代谢及分子生物 学的研究作出了重要贡献,他与美藉德裔生物化学家 Lipmann 共获 1953 年诺贝尔生理
医学奖。 英国生物化学家 Sanger还于1953年确定了牛胰岛素中氨基酸的精确顺序而获得 1958年的诺贝尔化学奖。 1959年,美藉西班牙裔科学家 Ochoa发现了细菌的多核苷酸磷酸化酶,研究并重 建了将基因内的遗传信息通过RNA中间体翻译成蛋白质的过程。他和 Kornberg分享了 当年的诺贝尔生理医学奖,而后者的主要贡献在于实现了DNA分子在细菌细胞和试管 内的复制 美国生物化学家 Nirenberg在破译遗传密码方面作出了重要贡献, Holly阐明了酵母 丙氨酸tRNA的核苷酸排列顺序,后来证明所有tRNA的结构均相似。美藉印度裔生物 化学家 Khorana曾合成了精确结构的己知核酸分子,并首次人工制成酵母基因。他们3 人共获1969年诺贝尔生理医学奖。 法国生物学家 Lwoff、 JAcob和生物化学家 Monod由于在病毒DNA和mRNA等方 面出色的大量研究工作而共获1965年诺贝尔生理医学奖。 1988年,美国遗传学家 Mcclintock由于在二十世纪五十年代提出并发现了可移动 的遗传因子而获得诺贝尔生理医学奖。 1989年,美国科学家 Altman和Cech由于发现某些RNA具有酶的功能(称为核酶) 而共享诺贝尔化学奖 1993年,美国科学家 Roberts和 Sharp由于在断裂基因方面的工作而荣获诺贝尔生 理医学奖。 1994年,美国科学家 Gilman和 Rodbell由于发现了G蛋白在细胞内信息传导中的 作用而分享诺贝尔生理医学奖 1995年,美国科学家 Lewis、德国科学家 Nusslein- Volhard和美国科学家 Wieschaus 由于在20世纪40~知0年代先后独立鉴定了控制果蝇体节发育基因而共享诺贝尔生理医 学奖 我国生物化学界的先驱吴宪教授在20年代初由美回国后,在协和医科大学生化系 与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有 重大影响的研究。1965年我国化学和生物化学家用化学方法在世界上首次人工合成了 具有生物活性的结晶牛胰岛素,1983年又通过大协作完成了酵母丙氨酸转移核糖核酸 的人工合成。近年来,在酶学研究、蛋白质结构及生物膜的结构与功能等方面都有举世 瞩目的研究成果
4 医学奖。 英国生物化学家 Sanger 还于 1953 年确定了牛胰岛素中氨基酸的精确顺序而获得 1958 年的诺贝尔化学奖。 1959 年,美藉西班牙裔科学家 Uchoa 发现了细菌的多核苷酸磷酸化酶,研究并重 建了将基因内的遗传信息通过 RNA 中间体翻译成蛋白质的过程。他和 Kornberg 分享了 当年的诺贝尔生理医学奖,而后者的主要贡献在于实现了 DNA 分子在细菌细胞和试管 内的复制。 美国生物化学家 Nirenberg 在破译遗传密码方面作出了重要贡献,Holly 阐明了酵母 丙氨酸 tRNA 的核苷酸排列顺序,后来证明所有 tRNA 的结构均相似。美藉印度裔生物 化学家 Khorana 曾合成了精确结构的己知核酸分子,并首次人工制成酵母基因。他们 3 人共获 1969 年诺贝尔生理医学奖。 法国生物学家 Lwoff、JAcob 和生物化学家 Monod 由于在病毒 DNA 和 mRNA 等方 面出色的大量研究工作而共获 1965 年诺贝尔生理医学奖。 1988 年,美国遗传学家 McClintock 由于在二十世纪五十年代提出并发现了可移动 的遗传因子而获得诺贝尔生理医学奖。 1989 年,美国科学家 Altman 和 Cech 由于发现某些 RNA 具有酶的功能(称为核酶) 而共享诺贝尔化学奖。 1993 年,美国科学家 Roberts 和 Sharp 由于在断裂基因方面的工作而荣获诺贝尔生 理医学奖。 1994 年,美国科学家 Gilman 和 Rodbell 由于发现了 G 蛋白在细胞内信息传导中的 作用而分享诺贝尔生理医学奖。 1995 年,美国科学家 Lewis、德国科学家 Nusslein-Volhard 和美国科学家 Wieschaus 由于在 20 世纪 40~70 年代先后独立鉴定了控制果蝇体节发育基因而共享诺贝尔生理医 学奖。 我国生物化学界的先驱吴宪教授在 20 年代初由美回国后,在协和医科大学生化系 与汪猷、张昌颖等人一道完成了蛋白质变性理论、血液生化检测和免疫化学等一系列有 重大影响的研究。1965 年我国化学和生物化学家用化学方法在世界上首次人工合成了 具有生物活性的结晶牛胰岛素,1983 年又通过大协作完成了酵母丙氨酸转移核糖核酸 的人工合成。近年来,在酶学研究、蛋白质结构及生物膜的结构与功能等方面都有举世 瞩目的研究成果
由近百年来生物化学及其实验技术的发展史可以看出,该学科的发展与实验技术的 发展密切相关,每一种新的生化物质的发现与研究都离不开实验技术,实验技术每一次 新的发明都大大推动了生物化学研究的进展,因而对于每一位现代生物科学工作者,尤 其是生物化学工作者,学习并掌握各种生物化学实验技术就是极为重要的。 1.2实验室规则 (1)实验前必须认真预习实验内容,明确本次实验的目的和要求,掌握实验原理, 写好实验预习报告,否则,不能进行实验。 (2)实验时自觉遵守实验室纪律,保持室内安静,不大声说笑和喧哗 (3)实验过程中要听从教师指导,认真按照实验步骤和操作规程进行实验。若想改 进和设计新的实验方法,必须取得教师的同意。实验时认真进行实验记录,实验完毕及 时整理数据,按时上交实验报告。 (4)实验台面、称量台、药品架、水池以及各种实验仪器内外都必须保持清洁整齐, 药品称完后立即盖好瓶盖放回药品架,严禁瓶盖及药勺混杂,切勿使药品(尤其是 NaOH)洒落在天平和实验台面上,毛刷用后必须立即挂好,各种器皿不得丢弃在水池 内 (5)配制试剂和用无离子水要注意节省,按实验实际使用量配制,多余的重要试剂 和各种有机试剂要按教师要求进行回收,昂贵的 Sephadex、 Sepharose凝胶和DEAE纤 维素等,用后必须及时回收,不得丢弃 (6)配制的试剂和实验过程中的样品,尤其是保存在冰箱和冷室中的样品,必须贴 上标签、写上品名、浓度、姓名和日期等,放在冰箱中的易挥发溶液和酸性溶液,必须 严密封口 ⑦)配制和使用洗液必须极为小心,强酸强碱必须倒入废液缶或冲稀后排放。电泳 后的凝胶和各种废物不得倒入水池,只能倒入废物桶。 (8)使用贵重精密仪器应严格遵守操作规程。使用分光光度计时不得将溶液洒在仪 器内外和地面上。使用高速冷冻离心机和HPLC等大型仪器必须经过考核。仪器发生 故障应立即报告教师,未经许可不得自己随意检修。 (9)实验室内严禁吸烟、饮水和进食,严禁用嘴吸移液管和虹吸管。易燃液体不得 接近明火和电炉,凡产生烟雾、有害气体和不良气味的实验,均应在通风条件下进行。 0实验完毕必须及时洗净并放好各种玻璃仪器,插好自动部分收集器上的试管
5 由近百年来生物化学及其实验技术的发展史可以看出,该学科的发展与实验技术的 发展密切相关,每一种新的生化物质的发现与研究都离不开实验技术,实验技术每一次 新的发明都大大推动了生物化学研究的进展,因而对于每一位现代生物科学工作者,尤 其是生物化学工作者,学习并掌握各种生物化学实验技术就是极为重要的。 1.2 实验室规则 ⑴ 实验前必须认真预习实验内容,明确本次实验的目的和要求,掌握实验原理, 写好实验预习报告,否则,不能进行实验。 ⑵ 实验时自觉遵守实验室纪律,保持室内安静,不大声说笑和喧哗。 ⑶ 实验过程中要听从教师指导,认真按照实验步骤和操作规程进行实验。若想改 进和设计新的实验方法,必须取得教师的同意。实验时认真进行实验记录,实验完毕及 时整理数据,按时上交实验报告。 ⑷ 实验台面、称量台、药品架、水池以及各种实验仪器内外都必须保持清洁整齐, 药品称完后立即盖好瓶盖放回药品架,严禁瓶盖及药勺混杂,切勿使药品(尤其是 NaOH)洒落在天平和实验台面上,毛刷用后必须立即挂好,各种器皿不得丢弃在水池 内。 ⑸ 配制试剂和用无离子水要注意节省,按实验实际使用量配制,多余的重要试剂 和各种有机试剂要按教师要求进行回收,昂贵的 Sephadex、Sepharose 凝胶和 DEAE 纤 维素等,用后必须及时回收,不得丢弃。 ⑹ 配制的试剂和实验过程中的样品,尤其是保存在冰箱和冷室中的样品,必须贴 上标签、写上品名、浓度、姓名和日期等,放在冰箱中的易挥发溶液和酸性溶液,必须 严密封口。 ⑺ 配制和使用洗液必须极为小心,强酸强碱必须倒入废液缶或冲稀后排放。电泳 后的凝胶和各种废物不得倒入水池,只能倒入废物桶。 ⑻ 使用贵重精密仪器应严格遵守操作规程。使用分光光度计时不得将溶液洒在仪 器内外和地面上。使用高速冷冻离心机和HPLC等大型仪器必须经过考核。仪器发生 故障应立即报告教师,未经许可不得自己随意检修。 ⑼ 实验室内严禁吸烟、饮水和进食, 严禁用嘴吸移液管和虹吸管。易燃液体不得 接近明火和电炉,凡产生烟雾、有害气体和不良气味的实验,均应在通风条件下进行。 ⑽ 实验完毕必须及时洗净并放好各种玻璃仪器,插好自动部分收集器上的试管