第三章食品辐射保藏 呻章学司目的与要 1、食品辐射保藏的基本理论 2、概念:同位素,放射性同位素,衰变,衰变速度半衰期 3、放射性强度单位:居里,目前辐照场容量 4、辐射场的建造特点、操作过程及剂量确定 5、辐照剂量和吸收剂量,伦琴,拉德/戈瑞 第一节食品辐射保藏概述 食品辐射保藏就是利用原子能射线的辐射能量对肉类制品、粮食、水果、蔬菜、调味料、 饲料以及其他加工产品进行杀菌、杀虫、抑制发芽、延迟后熟等处理。 主要应用:香辛料杀菌、如方便面汤料包,抑制马铃薯、洋葱等发芽,干制 品、如核桃、药材杀菌杀虫。有时能解决常规方法难以解决的包保藏问题。 辐射保藏的优越性(一般了解) 1食品在受辐射过程中温度升高甚微。因此,被辐射适当处理后的食品在感 官性状如色、香味等方面与新鲜食品差别不大,特别适合于不宜采用其它保藏方 法的食品 2射线穿透力强。在不拆包装和解冻的情况下,可杀灭其深藏于谷物、果实 或冻肉内部的害虫和微生物,也节省了包装材料,避免再污染。 3射线处理过的食品不会留下任何残留物。与化学处理相比是一大特点 4节省能源:据76年国际原子能机构(IAEA)通报的估计,食品采用冷藏 需消耗能量为90千瓦时/,巴氏消毒230千瓦时丌,热力杀菌300千瓦时/, 脱水处理(千燥)700千瓦时邝,而辐射杀菌只需634千瓦时丌,辐射巴氏消毒 0.76千瓦时 5适应范围广:能处理各种不同类型的食物品种,如从装箱的马铃薯到袋装 的面粉、肉类、水果、蔬菜、谷物、水产等。多种体积的食品;不同状态,固体、 液体 6加工效率高、整个工序可连续化、自动化。液态食品管道输送,更加方便 二、国内外发展简况(一般了解
1 第三章 食品辐射保藏 本章学习目的与要求 1、食品辐射保藏的基本理论 2、概念:同位素,放射性同位素,衰变,衰变速度/半衰期 3、放射性强度单位:居里,目前辐照场容量 4、辐射场的建造特点、操作过程及剂量确定 5、辐照剂量和吸收剂量,伦琴,拉德/戈瑞 第一节 食品辐射保藏概述 食品辐射保藏就是利用原子能射线的辐射能量对肉类制品、粮食、水果、蔬菜、调味料、 饲料以及其他加工产品进行杀菌、杀虫、抑制发芽、延迟后熟等处理。 主要应用:香辛料杀菌、如方便面汤料包,抑制马铃薯、洋葱等发芽,干制 品、如核桃、药材杀菌杀虫。有时能解决常规方法难以解决的包保藏问题。 一、辐射保藏的优越性(一般了解) 1 食品在受辐射过程中温度升高甚微。因此,被辐射适当处理后的食品在感 官性状如色、香味等方面与新鲜食品差别不大,特别适合于不宜采用其它保藏方 法的食品。 2 射线穿透力强。在不拆包装和解冻的情况下,可杀灭其深藏于谷物、果实 或冻肉内部的害虫和微生物,也节省了包装材料,避免再污染。 3 射线处理过的食品不会留下任何残留物。与化学处理相比是一大特点。 4 节省能源:据 76 年国际原子能机构(IAEA)通报的估计,食品采用冷藏 需消耗能量为 90 千瓦时/T,巴氏消毒 230 千瓦时/T,热力杀菌 300 千瓦时/T, 脱水处理(干燥)700 千瓦时/T,而辐射杀菌只需 6.34 千瓦时/T,辐射巴氏消毒 0.76 千瓦时/T。 5 适应范围广:能处理各种不同类型的食物品种,如从装箱的马铃薯到袋装 的面粉、肉类、水果、蔬菜、谷物、水产等。多种体积的食品;不同状态,固体、 液体。 6 加工效率高、整个工序可连续化、自动化。液态食品管道输送,更加方便。 二、国内外发展简况(一般了解)
1895年伦琴发现X射线后,Mink于1896年就提出Ⅹ-射线的杀菌作用。 二次大战期间,美国麻省理工学院的罗克多尔将射线处理汉堡包,揭开了辐 射保藏食品研究的序幕。 50年代起北美、欧洲、日本等30多个国家先后投入大量的费用进行研究 年代一些第三世界国家也加入该行列,目前从事这方面研究的有50-60个国 家 国际原子能组织(IAEA)、联合国粮农组织(FAO)、世界卫生组织(WHO) 等的支持和组织下,进行了种种国际协作研究。到1976年25种辐射处理食品在 18个国家得到无条件批准或暂定批准,允许供作为商品供一般使用。 1980年10月27日上述组织联合举行的第四次专门委员会议作出结论:用 10kGy以下平均最大剂量照射任何食品,在毒理学、营养学及微生物学上都丝毫 不存在问题,而且今后无须再对经低于此剂量辐照的各种食品进行毒性实验。 目前许多国家将辐射用于食品的加工与保藏。 美国、加拿大、法国、日本、中国等国家均批准在一些食品中使用辐照。 日本、加拿大建立了辐射工厂用于食品保藏、有鱼虾、果蔬等 欧洲(丹麦、保加利亚、法国等)用于抑制土豆、大蒜、洋葱发芽。 发展中国家,印度、伊朗、泰国、智利、阿根廷等用于粮食(谷物)的防霉 防虫。 我国自1958年开始,70年代的研究工作取得了一定的成效 1984年11月国家卫生部批准7项(马铃薯、洋葱、大蒜、花生、蘑菇、香 肠)辐照食品允许消费。之后又有20多种食品通过了不同级别的技术鉴定 80年代,一些省市建立了一起容量较大的辐射应用试验基地,如北京、上 海、天津、湖南、四川、广东等地。后期有浙江、深圳等 第二节辐射的基本原理 、放射性同位素与辐射 1放射性同位素 原子核中质子数相同,中子数不同的一类原子的总称为同位素,自然界中有 1800多种同位素,稳定的有300多种,不稳定的有1800多种,不稳定的同位素 称为放射性同位素。 2放射性衰变 每个放射性同位素经放出射线后,就转变成另一个原子核,从不稳定的元素 变成稳定同位素。原子核的转变过程称为放射性衰变。 原子核衰变数N与原子核总数No有关
2 1895 年伦琴发现 X-射线后,Mink 于 1896 年就提出 X-射线的杀菌作用。 二次大战期间,美国麻省理工学院的罗克多尔将射线处理汉堡包,揭开了辐 射保藏食品研究的序幕。 50 年代起北美、欧洲、日本等 30 多个国家先后投入大量的费用进行研究; 60 年代一些第三世界国家也加入该行列,目前从事这方面研究的有 50-60 个国 家。 国际原子能组织(IAEA)、联合国粮农组织(FAO)、世界卫生组织(WHO) 等的支持和组织下,进行了种种国际协作研究。到 1976 年 25 种辐射处理食品在 18 个国家得到无条件批准或暂定批准,允许供作为商品供一般使用。 1980 年 10 月 27 日上述组织联合举行的第四次专门委员会议作出结论:用 10kGy 以下平均最大剂量照射任何食品,在毒理学、营养学及微生物学上都丝毫 不存在问题,而且今后无须再对经低于此剂量辐照的各种食品进行毒性实验。 目前许多国家将辐射用于食品的加工与保藏。 美国、加拿大、法国、日本、中国等国家均批准在一些食品中使用辐照。 日本、加拿大建立了辐射工厂用于食品保藏、有鱼虾、果蔬等。 欧洲(丹麦、保加利亚、法国等)用于抑制土豆、大蒜、洋葱发芽。 发展中国家,印度、伊朗、泰国、智利、阿根廷等用于粮食(谷物)的防霉、 防虫。 我国自 1958 年开始,70 年代的研究工作取得了一定的成效。 1984 年 11 月国家卫生部批准 7 项(马铃薯、洋葱、大蒜、花生、蘑菇、香 肠)辐照食品允许消费。之后又有 20 多种食品通过了不同级别的技术鉴定。 80 年代,一些省市建立了一起容量较大的辐射应用试验基地,如北京、上 海、天津、湖南、四川、广东等地。后期有浙江、深圳等。 第二节 辐射的基本原理 一、放射性同位素与辐射 1 放射性同位素 原子核中质子数相同,中子数不同的一类原子的总称为同位素,自然界中有 1800 多种同位素,稳定的有 300 多种,不稳定的有 1800 多种,不稳定的同位素 称为放射性同位素。 2 放射性衰变 每个放射性同位素经放出射线后,就转变成另一个原子核,从不稳定的元素 变成稳定同位素。原子核的转变过程称为放射性衰变。 原子核衰变数 N 与原子核总数 N0 有关
实践证明,在单位时间内,衰变着的原子核的数目和其总数成正比,这一过程 是不可逆的可用公式表示如下 N=Noe-A t N:原子核数 原子核总数 t:经历时间; λ:衰变常数。 3半衰期(衰期速度) 放射性强度因衰变降低到原来一半所需的时间称为半衰期。或原子数衰变至 半时所需的时间。对于单独的一种放射性元素而言,半衰期和衰变常数一样也 是常数。半衰期以t12表示,则根据前面公式可得: 1/2N0=NOe-AtI/2 λtl/2=ln2=0.693 即衰变常数与任意同位素的半衰期的乘积为0693,这样可利用半衰期求出 其衰变常数。60Co的半衰期为527年,13Cs为30年,lC为5730年。 放射性强度因衰变而随时间不断减弱,此特点在筹建辐照场时必须考虑的问 二、放射性强度及其单位 1能量单位 电子伏特ev.表示辐射能量单位普通用eV,即相当于1个电子在真空中通 过电位差为1伏特的电场被加速所获得的动能。 1ev=1.602×10-12尔格(evg;1Mev=106ev,lkev=103ev。 2放射性强度 衡量放射性强弱程度的一个物理量。指单位时间内发生核衰变的次数。 21居里1Ci=37×1010衰变/秒即每秒中有37×1010次原子核衰变。 21现法定单位用贝克Bq,即每秒中有一个原子核衰变为1贝克 231Bq=1S-1,因此,1CF=3.7×1010Bq。 3辐射剂量 31法定单位为库仑仟千克(C/kg),以前曾用伦琴(R) 32在标准状况下(0℃,760mmHg),lcm3空气(0.00129g)能形成一个正 电或负电的静电单位的Ⅹ-射线或γ-射线照射量—1R 33一个正电或负电的离子具有480×10-10esu(静电单位)。即一个静电 单位的离子量为208×109个正电或负电离子(离子对),即1伦琴可使lcm3空 气产生208×109个正电或负电离子(离子对)。 IR=2.58×10-4C/kg(空气)
3 实践证明,在单位时间内,衰变着的原子核的数目和其总数成正比,这一过程 是不可逆的,可用公式表示如下: N=N0e-λt N:原子核数; N0:原子核总数; t:经历时间; λ:衰变常数。 3 半衰期(衰期速度) 放射性强度因衰变降低到原来一半所需的时间称为半衰期。或原子数衰变至 一半时所需的时间。对于单独的一种放射性元素而言,半衰期和衰变常数一样也 是常数。半衰期以 t1/2 表示,则根据前面公式可得: 1/2N0=N0e-λt1/2 λt1/2=ln2=0.693 即衰变常数与任意同位素的半衰期的乘积为 0.693,这样可利用半衰期求出 其衰变常数。 60Co 的半衰期为 5.27 年,137Cs 为 30 年,14C 为 5730 年。 放射性强度因衰变而随时间不断减弱,此特点在筹建辐照场时必须考虑的问 题。 二、放射性强度及其单位 1 能量单位 电子伏特 ev. 表示辐射能量单位普通用 eV,即相当于1个电子在真空中通 过电位差为1伏特的电场被加速所获得的动能。 1ev=1.602×10-12 尔格(evg);1Mev=106ev ,1kev=103ev。 2 放射性强度 衡量放射性强弱程度的一个物理量。指单位时间内发生核衰变的次数。 2.1 居里 1Ci=3.7×1010 衰变/秒 即每秒中有 3.7×1010 次原子核衰变。 2.1 现法定单位用贝克 Bq,即每秒中有一个原子核衰变为 1 贝克。 2.3 1Bq=1S-1,因此,1Ci=3.7×1010Bq。 3 辐射剂量 3.1 法定单位为库仑/千克(C/kg),以前曾用伦琴(R) 3.2 在标准状况下(0℃,760mmHg),1cm3 空气(0.00129g)能形成一个正 电或负电的静电单位的 X-射线或γ-射线照射量——1R。 3.3 一个正电或负电的离子具有 4.80×10-10e.s.u(静电单位)。即一个静电 单位的离子量为 2.08×109 个正电或负电离子(离子对),即 1 伦琴可使 1cm3 空 气产生 2.08×109 个正电或负电离子(离子对)。 1R=2.58×10-4C/kg(空气)
辐照场剂量的分布: 辐照场剂量的测定: 4吸收剂量 是电离辐射授予被辐射物质单位质量的平均能量,即被辐射物质吸收的辐射 能量,法定单位为J/kg,也称为戈瑞(Gy)。 以前曾用拉德(Rad)即1克被辐射物质吸收100尔格(erg)射线能量为 lRad。lRad=l00erg=624×1013eV/g I Gy=100Rad=104erg/g. 照射量和吸收剂量是完全不同的概念,有区别(照射量指空气电离程度来讲) 但两者都是描述辐射计量的,又相互联系 1个电子的电荷量是48×10-10esu产生一个esu需要的离子对数为208 ×109,而电子在空气中产生一对离子所消耗的平均能量为3373eV(电离功) IR照射量相当于0.0129g空气中吸收了208×109×373eV=7.02× l0l0eV=0.112erg能量 IR照射量时,1g空气的吸收能量为0.112erg/0.00129=868rg/g=0.868Rad即 空气的吸收剂量为0.868Rad=868×10-3Gy。 5吸收剂量速率 单位质量的被照射物质在单位时间中所吸收的能量称为吸收剂量速率。单位 为Gy/s。 吸收剂量速率与照射距离和辐射强度有关。距离越近,吸收剂量速率越大 距离相同,辐射强度越大,则吸收剂量越大 物料不同,吸收剂量速率也是不一样的 6辐射剂量与吸收剂量的关系 在辐照场仪器测定的是辐射剂量,而食品保藏通常讲的是吸收剂量,它 们之间可以换算。 D=f×Ⅹ D为吸收剂量,ⅹ为辐射剂量,f为转换系数 空气f=0.83, 食品f=0.92~0.97 对空气来讲,1伦琴就等于0.83拉德(Rad) 辐射源的来源 1人工放射性同位素 在食品辐射时供电离辐射用的放射线主要为y-射线,经常采用人工制备的 放射性同位素6Co(钴,半衰期527年)和13Cs(铯,半衰期30年)。 6Co经B衰变后放出两个能量不同的y-光子最后变为Ni;1Cs经B-衰
4 辐照场剂量的分布: 辐照场剂量的测定: 4 吸收剂量 是电离辐射授予被辐射物质单位质量的平均能量,即被辐射物质吸收的辐射 能量,法定单位为 J/kg,也称为戈瑞(Gy)。 以前曾用拉德(Rad)即 1 克被辐射物质吸收 100 尔格(erg)射线能量为 1Rad。1Rad=100erg/g=6.24×1013eV/g。 1Gy=100Rad=104erg/g。 照射量和吸收剂量是完全不同的概念,有区别(照射量指空气电离程度来讲) 但两者都是描述辐射计量的,又相互联系。 1 个电子的电荷量是 4.8×10-10e.s.u.产生一个 e.s.u.需要的离子对数为 2.08 ×109,而电子在空气中产生一对离子所消耗的平均能量为 33.73eV(电离功) 1R 照射量相当于 0.0129g 空气中吸收了 2.08×109×33.73eV=7.02× 1010eV=0.112erg 能量。 1R 照射量时,1g 空气的吸收能量为 0.112erg/0.00129=86.8erg/g=0.868Rad 即 空气的吸收剂量为 0.868Rad=8.68×10-3Gy。 5 吸收剂量速率 单位质量的被照射物质在单位时间中所吸收的能量称为吸收剂量速率。单位 为 Gy/s。 吸收剂量速率与照射距离和辐射强度有关。距离越近,吸收剂量速率越大, 距离相同,辐射强度越大,则吸收剂量越大。 物料不同,吸收剂量速率也是不一样的。 6 辐射剂量与吸收剂量的关系 在辐照场仪器测定的是辐射剂量,而食品保藏通常讲的是吸收剂量,它 们之间可以换算。 D=f × X D 为吸收剂量, X 为 辐射剂量, f 为转换系数 空气 f = 0.83, 食品 f = 0.92~0.97 对空气来讲, 1 伦琴就等于 0.83 拉德(Rad) 三、辐射源的来源 1 人工放射性同位素 在食品辐射时供电离辐射用的放射线主要为γ-射线,经常采用人工制备的 放射性同位素 60Co(钴,半衰期 5.27 年)和 137Cs(铯,半衰期 30 年)。 60Co 经β-衰变后放出两个能量不同的γ-光子最后变为 60Ni;137Cs 经β-衰
变后放出Y-光子最后变为137Ba 制备方法:将自然界中存在的稳定同位素sCo金属制成棒形、长方形、薄 片形、颗粒形、圆筒形或所需要的形状,置于反应堆活性区,经中子一定时间照 射,少量5Co原子吸收一个中子后即生成6Co辐射源。目前在商业上采用6Co 作为y-射线源 2电子加速器 利用电磁场作用,使电子获得较髙能量,即将电能转变成辐射能,这样仪器 设备装置有静电加速器、高频高压加速器、绝缘磁芯变压器,直流加速器有两种 方式 1.直接加高压,很高电压使电子获得动能如范德格拉夫加速器(静电加速 器) 2不是直接利用高电压,但反复多次将电子加速,如回旋加速器,电子感应 加速器。 第三节食品辐射的化学效应 电离辐射使物质产生化学变化的问题至今仍不是很清楚。由电离辐射使食 品产生多种离子、粒子及质子的基本过程有: 直接作用:生物大分子直接吸收辐射能后引起的辐射效应,即辐射能量的吸 收与辐射损伤发生在同一分子中。初级辐射——即物质接受辐射能后,形成离子、 激发态分子或分子碎片—与辐射程度有关。 间接作用:生物大分子从周围水分子中吸收辐射能后引起的辐射效应,即辐 射能量的吸收与辐射损伤发生在不同分子中。次级辐射—初级辐射的产物相互 作用生成与原物质不同的化合物——与温度等其他条件有关。 第四节食品辐射的生物学效应 生物学效应指辐射对生物体如微生物、昆虫、寄生虫、植物等的影响。这种 影响是由于生物体内的化学变化造成的 (1)已证实辐射不会产生特殊毒素,但在辐射后某些机体组织中有时发现 带有毒性的不正常代谢产物。 (2)辐射对活体组织的损伤主要是有关其代谢反应,视其机体组织受辐射 损伤后的恢复能力而异,这还取决于所使用的辐射总剂量的大小 (一)微生物 1辐射对微生物的作用(机制) (1)直接效应指微生物接受辐射后本身发生的反应,可使微生物死亡
5 变后放出γ-光子最后变为 137Ba。 制备方法:将自然界中存在的稳定同位素 59Co 金属制成棒形、长方形、薄 片形、颗粒形、圆筒形或所需要的形状,置于反应堆活性区,经中子一定时间照 射,少量 59Co 原子吸收一个中子后即生成 60Co 辐射源。目前在商业上采用 60Co 作为γ-射线源。 2 电子加速器 利用电磁场作用,使电子获得较高能量,即将电能转变成辐射能,这样仪器 设备装置有静电加速器、高频高压加速器、绝缘磁芯变压器,直流加速器有两种 方式: 1.直接加高压,很高电压使电子获得动能如范德格拉夫加速器(静电加速 器); 2.不是直接利用高电压,但反复多次将电子加速,如回旋加速器,电子感应 加速器。 第三节 食品辐射的化学效应 电离辐射使物质产生化学变化的问题至今仍不是很清楚。 由电离辐射使食 品产生多种离子、粒子及质子的基本过程有: 直接作用:生物大分子直接吸收辐射能后引起的辐射效应,即辐射能量的吸 收与辐射损伤发生在同一分子中。初级辐射——即物质接受辐射能后,形成离子、 激发态分子或分子碎片——与辐射程度有关。 间接作用:生物大分子从周围水分子中吸收辐射能后引起的辐射效应,即辐 射能量的吸收与辐射损伤发生在不同分子中。次级辐射——初级辐射的产物相互 作用生成与原物质不同的化合物——与温度等其他条件有关。 第四节 食品辐射的生物学效应 生物学效应指辐射对生物体如微生物、昆虫、寄生虫、植物等的影响。这种 影响是由于生物体内的化学变化造成的。 (1)已证实辐射不会产生特殊毒素,但在辐射后某些机体组织中有时发现 带有毒性的不正常代谢产物。 (2)辐射对活体组织的损伤主要是有关其代谢反应,视其机体组织受辐射 损伤后的恢复能力而异,这还取决于所使用的辐射总剂量的大小。 (一) 微生物 1 辐射对微生物的作用(机制) (1)直接效应 指微生物接受辐射后本身发生的反应,可使微生物死亡