Lindemann mechanism Ku A+ M A+ M
A + M A* + M k1 k-1 P k2 Lindemann mechanism
da klA 三K2 stationary- state approximation稳态近似 处理短寿命的“中间体” 浓度不随时间变化 dlA 0
[ ] [ ] * 2 * k A dt d A r = − = stationary-state approximation 稳态近似 处理短寿命的“中间体”: 浓度不随时间变化 0 [ ] * = dt d A
Lindemann mechanism Ku A+ M A+ M P dAl dtKLAJIM][A]=0
A + M A* + M k1 k-1 P k2 Lindemann mechanism * * * 1 1 2 [ ] [ ][ ] [ ][ ] [ ] 0 d A k A M k A M k A dt = − − = −
[a)≈k[AI[M] k1[M]+k2 da k2[A] K,kALli k1[M]+
1 2 * 1 [ ] [ ][ ] [ ] k M k k A M A + = − 1 2 1 2 [ ] [ ][ ] k M k k k A M r + = − [ ] [ ] * 2 * k A dt d A r = − =
Case I: pressure is low enough: k1[M门]<<k2 碰撞失活远小于反应 K,kLAMi 三 k1[M]+k2 二级反应 r=KLAILMI
Case I: pressure is low enough: 1 2 k [M] k − 1 2 1 2 [ ] [ ][ ] k M k k k A M r + = − [ ][ ] r = k1 A M 碰撞失活 远小于 反应 二级反应