电子科技大学研究生《机器学习》精品课程 第14讲深度CNN 14 Deep CNN 郝家胜(Jiasheng Hao) Ph.D.,Associate Professor Email:hao@uestc.edu.cn School of Automation Engineering University of Electronic Science and Technology of China,Chengdu 611731 Aug.2015第一稿;Apr2021第四稿
电子科技大学研究生《机器学习》精品课程 Email: hao@uestc.edu.cn School of Automation Engineering University of Electronic Science and Technology of China, Chengdu 611731 郝家胜 (Jiasheng Hao) Ph.D., Associate Professor Aug. 2015 第一稿;Apr. 2021 第四稿 第14讲 深度CNN 14 Deep CNN
LeNet:( CNN C3:f.maps 16@10x10 INPUT C1:feature maps S4:f.maps 16@5x5 6@28x28 32x32 S2:f.maps 6@14x14 C5:layer F6:layer 120 OUTPUT 84 10 Full connection Gaussian connections Convolutions Subsampling Convolutions Subsampling Full connection CNNs are basically layers of convolutions followed by su bsampling and fully connected layers. 口三大关键思想 ■ 局部感受野(卷积操作) ■ 权值共享 ■ 池化 2
LeNet:CNN 2 CNNs are basically layers of convolutions followed by su bsampling and fully connected layers. o 三大关键思想 n 局部感受野(卷积操作) n 权值共享 n 池化
CNNs in ilsvro Participation and Performance 0.28 0.66 5 0.03 35 0.23 29 2010 2011 2012 2013 2014 2015 2016 Number of Classification Average Precision Entries Errors(top-5) For Object Detection 3
CNNs in ILSVRC 3
What can CNN do perso car person dog norse 0.5 02 城市道 0.3 9, 050 nx k representation of Comvolutional layer with 0515225335445 sentence with static and multiple finer widths and non-stalic channels eature map到 x10
What can CNN do
What can CNN do
5 What can CNN do