The maximum packing fraction of various Arrangements of monodisperse spheres Arrangement Maximum packing fraction Simple cubic 0.52 Hexagonally 0.605 Body-centered 0.68 Face-centered 0.74
The maximum packing fraction of various Arrangements of monodisperse spheres Arrangement Maximum packing fraction Simple cubic 0.52 Hexagonally 0.605 Body-centered 0.68 Face-centered 0.74
The values of [n]andm for a number of suspensions of asymmetric particles,obtained by fitting experimental data to eqn.(7.7) System I 中m [n]中m Reference Spheres (submicron) 2.7 0.71 1.92 de Kruif et al.(1985) Spheres (40 um) 3.28 0.61 2.00 Giesekus(1983) Ground gypsum 3.25 0.69 2.24 Turian and Yuan(1977) Titanium dioxide 5.0 0.55 2.77 Turian and Yuan(1977) Laterite 9.0 0.35 3.15 Turian and Yuan (1977) Glass rods 9.25 0.268 2.48 Clarke (1967) (30×700m) Glass plates 9.87 0.382 3.77 Clarke(1967) (100×400um) Quartz grains 5.8 0.371 2.15 Clarke (1967) (53-76um) Glass fibres: axial ratio-7 3.8 0.374 1.42 Giesekus(1983) axial ratio-14 5.03 0.26 1.31 Giesekus(1983) axial ratio-21 6.0 0.233 1.40 Giesekus(1983)
Effect of Particle Shape 30 皇 20 10 0 0 10 20 30 40 50 Phase volume,φ Viscosity as a function of phase volume for various particle shapes
Effect of Particle Shape
4 月正天 3 2 = 0 0 10 20 30 40 Phase volume,.φ Viscosity as a function of phase volume for various aspect ratio of fibres
Effect of the viscosity of the internal phase -25294) where n=the viscoisty of the internal or the dispersed phase Several limiting cases: =[n]=2.5 the Einstein case (hard sphere) 7:=7[7]=1.75 7,=0;[]=1 the situation for gas bubbles
2.5 i 0.4s i o where i the viscoisty of the internal or the dispersed phase Several limiting cases: i ; 2.5 the Einstein case (hard sphere) i s; 1.75 i 0; 1 the situation for gas bubbles Effect of the viscosity of the internal phase